首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   2篇
  国内免费   3篇
测绘学   4篇
大气科学   21篇
地球物理   18篇
地质学   43篇
海洋学   17篇
天文学   16篇
自然地理   19篇
  2019年   3篇
  2018年   6篇
  2017年   3篇
  2016年   1篇
  2015年   1篇
  2014年   8篇
  2013年   9篇
  2012年   3篇
  2011年   3篇
  2010年   6篇
  2009年   3篇
  2008年   4篇
  2007年   7篇
  2006年   8篇
  2005年   6篇
  2004年   4篇
  2003年   6篇
  2002年   1篇
  2001年   5篇
  2000年   3篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   4篇
  1994年   1篇
  1993年   2篇
  1992年   4篇
  1991年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   4篇
  1981年   4篇
  1980年   3篇
  1979年   3篇
  1978年   5篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1971年   1篇
  1969年   1篇
排序方式: 共有138条查询结果,搜索用时 125 毫秒
71.
A common factor in landslide activation (or reactivation) is subsurface moisture and associated pore pressure variations linked to rainfall. Monitoring of these subsurface hydrogeological processes is necessary to improve our understanding of water‐induced landslide activation. Geophysical approaches, electrical methods in particular, are increasingly being applied to landslide monitoring because they provide non‐invasive spatial information in heterogeneous subsurface environments that can be difficult to characterise using surface observations or intrusive sampling alone. Electrical techniques are sensitive to changing subsurface moisture conditions, and have proven to be a useful tool for investigating the hydrogeology of natural and engineered slopes. The objectives of this investigation were to further develop electrical resistance monitoring for slope stability assessment, and to validate the approach at an intermittently‐active UK landslide system to advance the understanding of complex landslide activation mechanisms. A long‐term transfer resistance dataset was collected from a grid of electrodes to allow spatial monitoring of the landslide. These data were interpreted using a synthesis of rainfall, temperature, GPS and piezometric records. The resistance data were corrected for seasonal temperature variations and electrode movements were monitored, as these processes were shown to mask moisture related changes. Results reveal that resistance monitoring is sensitive to soil moisture accumulation, including changes in piezometric levels, and can be used to study the principal activation mechanism of slow‐moving shallow earthflows. Spatial monitoring using resistance maps was shown to be particularly valuable as it revealed the evolution of subsurface moisture distribution, in the lead up to landslide activation. Key benefits of this approach are that it provides a simple, rapid and non‐invasive means of spatially monitoring subsurface moisture dynamics linked to landslide activation at high‐temporal resolution. Crucially, it provides a means of monitoring subsurface hydraulic changes in the build‐up to slope failure, thereby contributing to early warning of landslide events. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   
72.
Landslides represent hazardous phenomena, often with significant implications. Monitoring landslides with time-series surface observations can indicate surface failure. Unmanned aerial vehicles (UAVs) employing compact digital cameras, in conjunction with structure-from-motion (SfM) and multi-view stereo (MVS) image processing approaches, have become commonplace in the geoscience research community. These methods offer relatively low-cost, flexible solutions for many geomorphological monitoring applications. However, conventionally ground control points (GCPs) are required for registration purposes, the provision of which is often expensive, difficult or even impracticable in hazardous and inaccessible terrain. In an attempt to overcome the reliance on GCPs, this paper reports research that has developed a morphology-based strategy to co-register multi-temporal UAV-derived products. It applies the attribute of curvature in combination with the scale-invariant feature transform algorithm, to generate time-invariant curvature features, which serve as pseudo-GCPs. Openness, a surface morphological digital elevation model derivative, is applied to identify relatively stable ground regions from which pseudo-GCPs are selected. A sensitivity threshold quantifies the minimum detectable change alongside unresolved biases and misalignment errors. The approach is evaluated at two study sites in the UK, first at Sandford with artificially induced surface change, and second at an active landslide at Hollin Hill, with multi-epoch SfM-MVS products derived from a consumer-grade UAV. Elevation changes and annual displacement rates at dm-level are estimated, with optimal results achieved over winter periods. The morphology-based co-registration strategy resulted in relative error ratios (i.e. mean error divided by average flying height) in the range 1:800–2500, comparable with those reported by similar studies conducted with UAVs augmented with real time kinematic (RTK)-Global Navigation Satellite Systems. Analysis demonstrates the potential of the morphology-based strategy for a semi-automatic, and practical co-registration approach to quantify surface motion. This can ultimately complement geotechnical and geophysical investigations and support the understanding of landslide behaviour, model prediction and construction of measures for mitigating risks. © 2018 John Wiley & Sons, Ltd.  相似文献   
73.
Hydraulic processes in porous media can be monitored in a minimally invasive fashion by time-lapse electrical resistivity tomography (ERT). The permanent installation of specifically designed ERT instrumentation, telemetry and information technology (IT) infrastructure enables automation of data collection, transfer, processing, management and interpretation. Such an approach gives rise to a dramatic increase in temporal resolution, thus providing new insight into rapidly occurring subsurface processes. In this paper, we discuss a practical implementation of automated time-lapse ERT. We present the results of a recent study in which we used controlled hydraulic experiments in two test cells at reduced field scale to explore the limiting conditions for process monitoring with cross-borehole ERT measurements. The first experiment used three adjacent boreholes to monitor rapidly rising and falling water levels. For the second experiment, we injected a saline tracer into a homogeneous flow field in freshwater-saturated sand; the dynamics of the plume were then monitored with 2D measurements across a 9-borehole fence and 3D measurements across a 3 × 3 grid of boreholes. We investigated different strategies for practical data acquisition and show that simple re-ordering of ERT measurement schemes can help harmonise data collection with the nature of the monitored process. The methodology of automated time-lapse ERT was found to perform well in different monitoring scenarios (2D/3D plus time) at time scales associated with realistic subsurface processes. The limiting factor is the finite amount of time needed for the acquisition of sufficiently comprehensive datasets. We found that, given the complexity of our monitoring scenarios, typical frame rates of at least 1.5–3 images per hour were possible without compromising image quality.  相似文献   
74.
Spectra taken by the Cassini Ultraviolet Imaging Spectrograph (UVIS) of Saturn’s C ring, B ring, Cassini Division, and A ring have been analyzed in order to characterize ring particle surface properties and water ice abundance in the rings. UVIS spectra sense the outer few microns of the ring particles. Spectra of the normalized reflectance (I/F) in all four regions show a characteristic water ice absorption feature near 165 nm. Our analysis shows that the fractional abundance of surface water ice is largest in the outer B ring and decreases by over a factor of 2 across the inner C ring. We calculate the mean path length of UV photons through icy ring particle regolith and the scattering asymmetry parameter using a Hapke reflectance model and a Shkuratov reflectance model to match the location of the water ice absorption edge in the data. Both models give similar retrieved values of the photon mean length, however the retrieved asymmetry (g) values are different. The photon mean path lengths are nearly uniform across the B and A rings. Shortward of 165 nm the rings exhibit a slope that turns up towards shorter wavelengths, while the UV slope of 180/150 nm (reflectance outside the water absorption ratioed to that inside the absorption band) tracks I/F with maxima in the outer B ring and in the central A ring. Retrieved values of the scattering asymmetry parameter show the regolith grains to be highly backscattering in the FUV spectral regime.  相似文献   
75.
北山柳园地区中志留世埃达克质花岗岩类及其地质意义   总被引:7,自引:3,他引:4  
北山柳园地区发育的埃达克质片麻状花岗闪长岩为钙碱性岩浆系列,具有较高SiO2 (>56%),Al2O3 (>15%)和较低的MgO (<3%)含量,Na2O>K2O; 并且具有高的Sr含量(>400×10-6)和Sr/Y比值; 样品轻重稀土强烈分异(La/Yb)N =18~86,强烈亏损重稀土Yb与Y,具有不明显的Eu异常(δEu=0.90~0.95); 富集LREE和大离子亲石元素(LILE),而亏损HREE、高场强元素(HFSE: Nb、Ta),与世界上典型的俯冲洋壳熔融形成的埃达克岩相似。然而样品具有相对高的(87Sr/86Sr)I (0.70635~0.70636)和相对低的εNd(t) (-0.8~-0.9),以及锆石具有相对较低的εHf (t) (-0.8~+2.7)同位素特征,比典型的俯冲洋壳熔融形成埃达克岩具有更多的放射成因,推测可能是源区加入了地壳物质/沉积物/或特殊的洋壳(OIB/E-MORB)熔融,以及侵位过程中地壳物质的混染所造成的。埃达克质片麻状黑云母花岗岩锆石LA-ICPMS年龄为424±4Ma,代表了花岗岩埃达克花岗岩的结晶年龄。花牛山岛弧带在中晚志留世时期具有较高的地热梯度,发育了大面积高εNd(t)钙碱性花岗岩和区域围岩发生了高温变质作用。因此,柳园埃达克岩是由于热的洋壳向花牛山岛弧地体俯冲过程中熔融形成的,俯冲洋壳熔融是本地区早古生代大规模地壳增生的重要方式之一。  相似文献   
76.
In a small hypervelocity impact, superheated gas and particles glow brightly with thermal emission for a brief time interval at short wavelengths; this phenomenon is referred to as an impact flash. Over the past decade, impact flashes have been observed on the Moon and in the laboratory in both the IR and visible portions of the spectrum. These phenomena have been used to constrain impactor parameters, such as impact size, velocity and composition. With the arrival of the Cassini spacecraft at Saturn, we embarked on a study of impact flashes in Saturn's rings. We present results on the feasibility of observing impact flashes and therefore estimating the flux of meteoroids impacting Saturn's rings using Cassini's Ultraviolet Imaging Spectrograph (UVIS). Our modeling effort is two-fold. We start by simulating impacts using the CTH hydrodynamical code. Impacts involve an icy ring particle and a serpentine meteoroid, modeled with the ANEOS equation of state. The objects are centimeters to meters in diameter and collide at 30 to 50 km s−1. We then use the resulting temperatures and densities of the impact plumes in a radiative transfer calculation. We calculate bound-free, free-free, electron scattering and negative ion opacities along a line-of-sight through the center of each impact plume. Our model has shown that impact flashes will not be seen with the UVIS because (1) the plumes are optically thick when their central temperatures are high, with photosphere temperatures too cool to emit observable UV flux and (2) when the plumes become optically thin, even the hottest region of the plume is too cool to observe in the UV. This corroborates the lack of UVIS impact flash detections to date. Impact flashes are not likely to be seen by other Cassini instruments because of the short lifetimes of the plumes.  相似文献   
77.
In the restricted circular three-body problem, two massive bodies travel on circular orbits about their mutual center of mass and gravitationally perturb the motion of a massless particle. The triangular Lagrange points, L4 and L5, form equilateral triangles with the two massive bodies and lie in their orbital plane. Provided the primary is at least 27 times as massive as the secondary, orbits near L4 and L5 can remain close to these locations indefinitely. More than 2200 cataloged asteroids librate about the L4 and L5 points of the Sun-Jupiter system, and five bodies have been discovered around the L4 point of the Sun-Neptune system. Small satellites have also been found librating about the L4 and L5 points of two of Saturn's moons. However, no objects have been discovered around the Earth-Moon L4 and L5 points. Using numerical integrations, we show that orbits near the Earth-Moon L4 and L5 points can survive for over a billion years even when solar perturbations are included, but the further addition of the far smaller perturbations from other planets destabilize these orbits within several million years. Thus, the lack of observed objects in these regions cannot be used as a constraint on Solar System formation, nor on the tidal evolution of the Moon's orbit.  相似文献   
78.
79.
A ground model of an active and complex landslide system in instability prone Lias mudrocks of North Yorkshire, UK is developed through an integrated approach, utilising geophysical, geotechnical and remote sensing investigative methods. Surface geomorphology is mapped and interpreted using immersive 3D visualisation software to interpret airborne light detection and ranging data and aerial photographs. Subsurface structure is determined by core logging and 3D electrical resistivity tomography (ERT), which is deployed at two scales of resolution to provide a means of volumetrically characterising the subsurface expression of both site scale (tens of metres) geological structure, and finer (metre to sub-metre) scale earth-flow related structures. Petrophysical analysis of the borehole core samples is used to develop relationships between the electrical and physical formation properties, to aid calibration and interpretation of 3D ERT images. Results of the landslide investigation reveal that an integrated approach centred on volumetric geophysical imaging successfully achieves a detailed understanding of structure and lithology of a complex landslide system, which cannot be achieved through the use of remotely sensed data or discrete intrusive sampling alone.  相似文献   
80.
Vertical mixing of the nocturnal stable boundary layer (SBL) over a complex land surface is investigated for a range of stabilities, using a decoupling index ( $0 < D_{rb} < 1$ ) based on the 2–50 m bulk gradient of the ubiquitous natural trace gas radon-222. The relationship between $D_{rb}$ and the bulk Richardson number ( $R_{ib}$ ) exhibits three broad regions: (1) a well-mixed region ( $D_{rb} \approx 0.05$ ) in weakly stable conditions ( $R_{ib} < 0.03$ ); (2) a steeply increasing region ( $0.05 < D_{rb} < 0.9$ ) for “transitional” stabilities ( $0.03 < R_{ib} < 1$ ); and (3) a decoupled region ( $D_{rb} \approx 0.9$ –1.0) in very stable conditions ( $R_{ib} > 1$ ). $D_{rb}$ exhibits a large variability within individual $R_{ib}$ bins, however, due to a range of competing processes influencing bulk mixing under different conditions. To explore these processes in $R_{ib}$ $D_{rb}$ space, we perform a bivariate analysis of the bulk thermodynamic gradients, various indicators of external influences, and key turbulence quantities at 10 and 50 m. Strong and consistent patterns are found, and five distinct regions in $R_{ib}$ $D_{rb}$ space are identified and associated with archetypal stable boundary-layer regimes. Results demonstrate that the introduction of a scalar decoupling index yields valuable information about turbulent mixing in the SBL that cannot be gained directly from a single bulk thermodynamic stability parameter. A significant part of the high variability observed in turbulence statistics during very stable conditions is attributable to changes in the degree of decoupling of the SBL from the residual layer above. When examined in $R_{ib}$ $D_{rb}$ space, it is seen that very different turbulence regimes can occur for the same value of $R_{ib}$ , depending on the particular combination of values for the bulk temperature gradient and wind shear, together with external factors. Extremely low turbulent variances and fluxes are found at 50 m height when $R_{ib} > 1$ and $D_{rb} \approx 1$ (fully decoupled). These “quiescent” cases tend to occur when geostrophic forcing is very weak and subsidence is present, but are not associated with the largest bulk temperature gradients. Humidity and net radiation data indicate the presence of low cloud, patchy fog or dew, any of which may aid decoupling in these cases by preventing temperature gradients from increasing sufficiently to favour gravity wave activity. The largest temperature gradients in our dataset are actually associated with smaller values of the decoupling index ( $D_{rb} < 0.7$ ), indicating the presence of mixing. Strong evidence is seen from enhanced turbulence levels, fluxes and submeso activity at 50 m, as well as high temperature variances and heat flux intermittencies at 10 m, suggesting this region of the $R_{ib}$ $D_{rb}$ distribution can be identified as a top-down mixing regime. This may indicate an important role for gravity waves and other wave-like phenomena in providing the energy required for sporadic mixing at this complex terrain site.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号