首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95794篇
  免费   1589篇
  国内免费   696篇
测绘学   2210篇
大气科学   7064篇
地球物理   19597篇
地质学   32873篇
海洋学   8463篇
天文学   21088篇
综合类   212篇
自然地理   6572篇
  2021年   730篇
  2020年   912篇
  2019年   983篇
  2018年   1814篇
  2017年   1793篇
  2016年   2242篇
  2015年   1460篇
  2014年   2248篇
  2013年   4683篇
  2012年   2465篇
  2011年   3529篇
  2010年   3101篇
  2009年   4252篇
  2008年   3854篇
  2007年   3696篇
  2006年   3620篇
  2005年   2890篇
  2004年   2983篇
  2003年   2828篇
  2002年   2662篇
  2001年   2349篇
  2000年   2285篇
  1999年   1973篇
  1998年   1956篇
  1997年   1954篇
  1996年   1688篇
  1995年   1634篇
  1994年   1430篇
  1993年   1315篇
  1992年   1231篇
  1991年   1128篇
  1990年   1317篇
  1989年   1156篇
  1988年   1029篇
  1987年   1213篇
  1986年   1143篇
  1985年   1410篇
  1984年   1596篇
  1983年   1541篇
  1982年   1386篇
  1981年   1324篇
  1980年   1171篇
  1979年   1122篇
  1978年   1157篇
  1977年   1079篇
  1976年   1016篇
  1975年   970篇
  1974年   970篇
  1973年   1004篇
  1972年   626篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
Journal of Geographical Systems - Scale is a central concept in the geographical sciences and is an intrinsic property of many spatial systems. It also serves as an essential thread in the fabric...  相似文献   
952.
953.
954.
955.
956.
The Gravity Recovery and Climate Experiment (GRACE) products provide valuable information about total water storage variations over the whole globe. Since GRACE detects mass variations integrated over vertical columns, it is desirable to separate its total water storage anomalies into their original sources. Among the statistical approaches, the principal component analysis (PCA) method and its extensions have been frequently proposed to decompose the GRACE products into space and time components. However, these methods only search for decorrelated components that on the one hand are not always interpretable and on the other hand often contain a superposition of independent source signals. In contrast, independent component analysis (ICA) represents a technique that separates components based on assumed statistical independence using higher-order statistical information. If one assumes that independent physical processes generate statistically independent signal components added up in the GRACE observations, separating them by ICA is a reliable strategy to identify these processes. In this paper, the performance of the conventional PCA, its rotated extension and ICA are investigated when applied to the GRACE-derived total water storage variations. These analyses have been tested on both a synthetic example and on the real GRACE level-2 monthly solutions derived from GeoForschungsZentrum Potsdam (GFZ RL04) and Bonn University (ITG2010). Within the synthetic example, we can show how imposing statistical independence in the framework of ICA improves the extraction of the ‘original’ signals from a GRACE-type super-position. We are therefore confident that also for the real case the ICA algorithm, without making prior assumptions about the long-term behaviour or on the frequencies contained in the signal, improves over the performance of PCA and its rotated extension in the separation of periodical and long-term components.  相似文献   
957.
Testing the accuracy of 3D modelling algorithms used for geological applications is extremely difficult as model results cannot be easily validated. This paper presents a new approach to evaluate the effectiveness of common interpolation algorithms used in 3D subsurface modelling, utilizing four synthetic grids to represent subsurface environments of varying geological complexity. The four grids are modelled with Inverse Distance Weighting and Ordinary Kriging, using data extracted from the synthetic grids in different spatial distribution patterns (regular, random, clustered and sparse), and with different numbers of data points (100, 256, 676 and 1,600). Utilizing synthetic grids for this evaluation allows quantitative statistical assessment of the accuracy of both interpolation algorithms in a variety of sampling conditions. Data distribution proved to be an important factor; as in many geological situations, relatively small numbers of randomly distributed data points can generate more accurate 3D models than larger amounts of clustered data. This study provides insight for optimizing the quantity and distribution of data required to accurately and cost-effectively interpolate subsurface units of varying complexity.  相似文献   
958.
Sub-daily alias and draconitic errors in the IGS orbits   总被引:4,自引:2,他引:4  
Harmonic signals with a fundamental period near the GPS draconitic year (351.2 days) and overtones up to at least the sixth multiple have been observed in the power spectra of nearly all products of the International GNSS Service (IGS), including station position time series, apparent geocenter motions, orbit jumps between successive days, and midnight discontinuities in earth orientation parameter (EOP) rates. Two main mechanisms have been suggested for the harmonics: mismodeling of orbit dynamics and aliasing of near-sidereal local station multipath effects. Others have studied the propagation of local multipath errors into draconitic position variations, but orbit-related processes have been less examined. We elaborate our earlier analysis of GPS day-boundary orbit discontinuities where we observed some draconitic features as well as prominent spectral bands near 29-, 14-, 9-, and 7-day periods. Finer structures within the sub-seasonal bands fall close to the expected alias frequencies for 24-h sampling of sub-daily EOP tide lines but do not coincide precisely. While once-per-revolution empirical orbit parameters should strongly absorb any sub-daily EOP tide errors due to near-resonance of their respective periods, the observed differences require explanation. This has been done by simulating EOP tidal errors and checking their impact on a long series of estimated daily GPS orbits and EOPs. Indeed, simulated tidal aliases are found to be very similar to the observed IGS orbital features in the sub-seasonal bands. Moreover and unexpectedly, some low draconitic harmonics were also produced, potentially a source for the widespread errors in most IGS products. The results from this study are further evidence for the need of an improved sub-daily EOP tide model.  相似文献   
959.
Displacements of the Earth’s surface caused by tidal and non-tidal loading forces are relevant in high-precision space geodesy. Some of the corrections are recommended by the international scientific community to be applied at the observation level, e.g., ocean tidal loading (OTL) and atmospheric tidal loading (ATL). Non-tidal displacement corrections are in general recommended not to be applied in the products of the International Earth Rotation and Reference Systems Service, in particular atmospheric non-tidal loading (ANTL), oceanic and hydrological non-tidal corrections. We assess and compare the impact of OTL, ATL and ANTL on SLR-derived parameters by reprocessing 12 years of SLR data considering and ignoring individual corrections. We show that loading displacements have an influence not only on station long-term stability, but also on geocenter coordinates, Earth Rotation Parameters, and satellite orbits. Applying the loading corrections reduces the amplitudes of annual signals in the time series of geocenter and station coordinates. The general improvement of the SLR station 3D coordinate repeatability when applying OTL, ATL and ANTL corrections are 19.5 %, 0.2 % and 3.3 % respectively, w.r.t. the solutions without loading corrections. ANTL corrections play a crucial role in the combination of optical (SLR) and microwave (GNSS, VLBI, DORIS) space geodetic observation techniques, because of the so-called Blue-Sky effect: SLR measurements can be carried out only under cloudless sky conditions—typically during high air pressure conditions, when the Earth’s crust is deformed, whereas microwave observations are weather-independent. Thus, applying the loading corrections at the observation level improves SLR-derived products as well as the consistency with microwave-based results. We assess the Blue-Sky effect on SLR stations and the consistency improvement between GNSS and SLR solutions when ANTL corrections are included. The omission of ANTL corrections may lead to inconsistencies between SLR and GNSS solutions of up to 2.5 mm for inland stations. As a result, the estimated GNSS–SLR coordinate differences correspond better to the local ties at the co-located stations when applying ANTL corrections.  相似文献   
960.
Agent-based simulation has become an important modeling approach in activity-travel analysis. Social activities account for a large amount of travel and have an important effect on activity-travel scheduling. Participants in joint activities usually have various options regarding location, participants, and timing and take different approaches to make their decisions. In this context, joint activity participation requires negotiation among agents involved, so that conflicts among the agents can be addressed. Existing mechanisms do not fully provide a solution when utility functions of agents are nonlinear and non-monotonic. Considering activity-travel scheduling in time and space as an application, we propose a novel negotiation approach, which takes into account these properties, such as continuous and discrete issues, and nonlinear and non-monotonic utility functions, by defining a concession strategy and a search mechanism. The results of experiments show that agents having these properties can negotiate efficiently. Furthermore, the negotiation procedure affects individuals’ choices of location, timing, duration, and participants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号