首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
大气科学   1篇
地球物理   2篇
地质学   1篇
海洋学   2篇
天文学   22篇
自然地理   1篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
  2009年   2篇
  2008年   3篇
  2007年   2篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   2篇
  1995年   2篇
排序方式: 共有29条查询结果,搜索用时 15 毫秒
11.
Fabrication, packaging and experimental results on the calibration of metal-semiconductor-metal (MSM) photodetectors made on diamond are reported. LYRA (Lyman- RAdiometer onboard PROBA-2) will use diamond detectors for the first time in space for a solar physics instrument. A set of measurement campaigns was designed to obtain the XUV-to-VIS responsivity of the devices and other characterizations. The measurements of responsivity in EUV and VUV spectral ranges (40–240 nm) have been carried out by the Physkalisch-Technische Bundesanstalt (PTB) in Germany at the electron storage ring BESSY II. The longer wavelength range from 210 to 1127 nm was measured with monochromatic light by using a Xe-lamp at IMO-IMOMEC. The diamond detectors exhibit a photoresponse which lie in the 35–65 mA/W range at 200 nm (corresponding to an external quantum efficiency of 20–40%) and indicate a visible rejection ratio (200–500 nm) higher than four orders of magnitude.  相似文献   
12.
The interaction between differential rotation and magnetic fields in the solar convection zone was recently modelled by Brun (2004). One consequence of that model is that the Maxwell stresses can oppose the Reynolds stresses, and thus contribute to the transport of the angular momentum towards the solar poles, leading to a reduced differential rotation. So, when magnetic fields are weaker, a more pronounced differential rotation can be expected, yielding a higher rotation velocity at low latitudes taken on the average. This hypothesis is consistent with the behaviour of the solar rotation during the Maunder minimum. In this work we search for similar signatures of the relationship between the solar activity and rotation determined tracing sunspot groups and coronal bright points. We use the extended Greenwich data set (1878–1981) and a series of full-disc solar images taken at 28.4 nm with the EIT instrument on the SOHO spacecraft (1998–2000). We investigate the dependence of the solar rotation on the solar activity (described by the relative sunspot number) and the interplanetary magnetic field (calculated from the interdiurnal variability index). Possible rotational signatures of two weak solar activity cycles at the beginning of the 20th century (Gleissberg minimum) are discussed. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
13.
The RCP greenhouse gas concentrations and their extensions from 1765 to 2300   总被引:16,自引:2,他引:14  
We present the greenhouse gas concentrations for the Representative Concentration Pathways (RCPs) and their extensions beyond 2100, the Extended Concentration Pathways (ECPs). These projections include all major anthropogenic greenhouse gases and are a result of a multi-year effort to produce new scenarios for climate change research. We combine a suite of atmospheric concentration observations and emissions estimates for greenhouse gases (GHGs) through the historical period (1750?C2005) with harmonized emissions projected by four different Integrated Assessment Models for 2005?C2100. As concentrations are somewhat dependent on the future climate itself (due to climate feedbacks in the carbon and other gas cycles), we emulate median response characteristics of models assessed in the IPCC Fourth Assessment Report using the reduced-complexity carbon cycle climate model MAGICC6. Projected ??best-estimate?? global-mean surface temperature increases (using inter alia a climate sensitivity of 3°C) range from 1.5°C by 2100 for the lowest of the four RCPs, called both RCP3-PD and RCP2.6, to 4.5°C for the highest one, RCP8.5, relative to pre-industrial levels. Beyond 2100, we present the ECPs that are simple extensions of the RCPs, based on the assumption of either smoothly stabilizing concentrations or constant emissions: For example, the lower RCP2.6 pathway represents a strong mitigation scenario and is extended by assuming constant emissions after 2100 (including net negative CO2 emissions), leading to CO2 concentrations returning to 360 ppm by 2300. We also present the GHG concentrations for one supplementary extension, which illustrates the stringent emissions implications of attempting to go back to ECP4.5 concentration levels by 2250 after emissions during the 21st century followed the higher RCP6 scenario. Corresponding radiative forcing values are presented for the RCP and ECPs.  相似文献   
14.
In Fall 2008 NASA selected a large international consortium to produce a comprehensive automated feature-recognition system for the Solar Dynamics Observatory (SDO). The SDO data that we consider are all of the Atmospheric Imaging Assembly (AIA) images plus surface magnetic-field images from the Helioseismic and Magnetic Imager (HMI). We produce robust, very efficient, professionally coded software modules that can keep up with the SDO data stream and detect, trace, and analyze numerous phenomena, including flares, sigmoids, filaments, coronal dimmings, polarity inversion lines, sunspots, X-ray bright points, active regions, coronal holes, EIT waves, coronal mass ejections (CMEs), coronal oscillations, and jets. We also track the emergence and evolution of magnetic elements down to the smallest detectable features and will provide at least four full-disk, nonlinear, force-free magnetic field extrapolations per day. The detection of CMEs and filaments is accomplished with Solar and Heliospheric Observatory (SOHO)/Large Angle and Spectrometric Coronagraph (LASCO) and ground-based Hα data, respectively. A?completely new software element is a trainable feature-detection module based on a generalized image-classification algorithm. Such a trainable module can be used to find features that have not yet been discovered (as, for example, sigmoids were in the pre-Yohkoh era). Our codes will produce entries in the Heliophysics Events Knowledgebase (HEK) as well as produce complete catalogs for results that are too numerous for inclusion in the HEK, such as the X-ray bright-point metadata. This will permit users to locate data on individual events as well as carry out statistical studies on large numbers of events, using the interface provided by the Virtual Solar Observatory. The operations concept for our computer vision system is that the data will be analyzed in near real time as soon as they arrive at the SDO Joint Science Operations Center and have undergone basic processing. This will allow the system to produce timely space-weather alerts and to guide the selection and production of quicklook images and movies, in addition to its prime mission of enabling solar science. We briefly describe the complex and unique data-processing pipeline, consisting of the hardware and control software required to handle the SDO data stream and accommodate the computer-vision modules, which has been set up at the Lockheed-Martin Space Astrophysics Laboratory (LMSAL), with an identical copy at the Smithsonian Astrophysical Observatory (SAO).  相似文献   
15.
Several environmental chemicals are suspected to be responsible for adverse health effects on the reproductive system in various organisms. During this work, environmentally relevant concentrations of North Sea oil were used alone or in combination with alkylphenols and additional PAH to study the effect on vitellogenin-like protein expression and gonadal development in mussels. North Sea oil (0.5 ppm) induced the expression of phospho-proteins in both sexes indicating that some compounds are oestrogen-mimics. This induction was not seen in samples dosed with the mixture but signs of toxic effects were observed in the gonads. Indeed, numerous degenerating ovarian follicles in females and foci, similar to vertebrate melanomacrophage centres, were observed in testes.  相似文献   
16.
Eit and LASCO Observations of the Initiation of a Coronal Mass Ejection   总被引:2,自引:0,他引:2  
We present the first observations of the initiation of a coronal mass ejection (CME) seen on the disk of the Sun. Observations with the EIT experiment on SOHO show that the CME began in a small volume and was initially associated with slow motions of prominence material and a small brightening at one end of the prominence. Shortly afterward, the prominence was accelerated to about 100 km s-1 and was preceded by a bright loop-like structure, which surrounded an emission void, that traveled out into the corona at a velocity of 200–400 km s-1. These three components, the prominence, the dark void, and the bright loops are typical of CMEs when seen at distance in the corona and here are shown to be present at the earliest stages of the CME. The event was later observed to traverse the LASCO coronagraphs fields of view from 1.1 to 30 R⊙. Of particular interest is the fact that this large-scale event, spanning as much as 70 deg in latitude, originated in a volume with dimensions of roughly 35" (2.5 x 104 km). Further, a disturbance that propagated across the disk and a chain of activity near the limb may also be associated with this event as well as a considerable degree of activity near the west limb.  相似文献   
17.
Full-disc full-resolution (FDFR) solar images obtained with the Extreme Ultraviolet Imaging Telescope (EIT) on board the Solar and Heliospheric Observatory (SOHO) were used to analyse the centre-to-limb function and latitudinal distribution of coronal bright points. The results obtained with the interactive and the automatic method, as well as for three subtypes of coronal bright points for the time period 4 June 1998 to 22 May 1999 are presented and compared. An indication of a two-component latitudinal distribution of coronal bright points was found. The central latitude of coronal bright points traced with the interactive method lies between 10 and 20. This is closer to the equator than the average latitude of sunspots in the same period. Possible implications for the interpretation of the solar differential rotation are discussed. In the appendix, possible differences between the two solar hemispheres are analysed. More coronal bright points were present in the southern solar hemisphere than in the northern one. This asymmetry is statistically significant for the interactive method and not for the automatic method. The visibility function is symmetrical around the central meridian.  相似文献   
18.
Knowledge of the Solar Diameter Imager and Surface Mapper (SODISM) plate scale is a fundamental parameter for obtaining the solar radius. We have determined the plate scale of the telescope on the ground and in flight onboard the Picard spacecraft. The results show significant differences; the main reason is that the conditions of observation are not the same. In addition, the space environment has an impact on the performance of a metrology instrument. Therefore, calibration in space and under the same conditions of observation is crucial. The transit of Venus allowed us to determine the plate scale of the SODISM telescope and hence the absolute value of the solar radius. The transit was observed from space by the Picard spacecraft on 5?–?6 June 2012. We exploited the data recorded by SODISM to determine the plate scale of the instrument, which depends on the characteristics of optical elements (mirrors, filters, or front window). The mean plate scale at 607.1 nm is found to be 1.0643 arcseconds?pixel?1 with 3×10?4 RMS. The solar radius at 607.1 nm from 1 AU is found to be equal to 959.86 arcseconds.  相似文献   
19.
20.
SECCHI-EUVI telescopes provide the first EUV images enabling a 3D reconstruction of solar coronal structures. We present a stereoscopic reconstruction method based on the Velociraptor algorithm, a multiscale optical-flow method that estimates displacement maps in sequences of EUV images. Following earlier calibration on sequences of SOHO-EIT data, we apply the algorithm to retrieve depth information from the two STEREO viewpoints using the SECCHI-EUVI telescope. We first establish a simple reconstruction formula that gives the radial distance to the centre of the Sun of a point identified both in EUVI-A and EUVI-B from the separation angle and the displacement map. We select pairs of images taken in the 30.4 nm passband of EUVI-A and EUVI-B, and apply a rigid transform from the EUVI-B image in order to set both images in the same frame of reference. The optical flow computation provides displacement maps from which we reconstruct a dense map of depths using the stereoscopic reconstruction formula. Finally, we discuss the estimation of the height of an erupting filament.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号