首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65827篇
  免费   1410篇
  国内免费   486篇
测绘学   1634篇
大气科学   5272篇
地球物理   13694篇
地质学   21385篇
海洋学   5714篇
天文学   15210篇
综合类   133篇
自然地理   4681篇
  2020年   472篇
  2019年   495篇
  2018年   933篇
  2017年   916篇
  2016年   1361篇
  2015年   1011篇
  2014年   1413篇
  2013年   3236篇
  2012年   1487篇
  2011年   2270篇
  2010年   1938篇
  2009年   2917篇
  2008年   2657篇
  2007年   2390篇
  2006年   2455篇
  2005年   2131篇
  2004年   2234篇
  2003年   2059篇
  2002年   1962篇
  2001年   1773篇
  2000年   1745篇
  1999年   1504篇
  1998年   1490篇
  1997年   1478篇
  1996年   1270篇
  1995年   1206篇
  1994年   1088篇
  1993年   992篇
  1992年   939篇
  1991年   798篇
  1990年   1005篇
  1989年   847篇
  1988年   752篇
  1987年   925篇
  1986年   815篇
  1985年   1019篇
  1984年   1181篇
  1983年   1122篇
  1982年   1016篇
  1981年   976篇
  1980年   833篇
  1979年   815篇
  1978年   867篇
  1977年   788篇
  1976年   749篇
  1975年   695篇
  1974年   703篇
  1973年   708篇
  1972年   440篇
  1971年   384篇
排序方式: 共有10000条查询结果,搜索用时 172 毫秒
531.
Methods of iteration are discussed in relation to Kepler's equation, and various initial guesses are considered, with possible strategies for choosing them. Several of these are compared; the method of iteration used in the comparisons has local convergence of the fourth order.WANG Laboratories, Inc.  相似文献   
532.
MARC J.P. GOUW 《Sedimentology》2008,55(5):1487-1516
Ancient fluvial successions often act as hydrocarbon reservoirs. Sub‐surface data on the alluvial architecture of fluvial successions are often incomplete and modelling is performed to reconstruct the stratigraphy. However, all alluvial architecture models suffer from the scarcity of field data to test and calibrate them. The purposes of this study were to quantify the alluvial architecture of the Holocene Rhine–Meuse delta (the Netherlands) and to determine spatio‐temporal trends in the architecture. Five north–south orientated cross‐sections, perpendicular to the general flow direction, were compiled for the fluvial‐dominated part of the delta. These sections were used to calculate the width/thickness ratios of fluvial sandbodies (SBW/SBT) and the proportions of channel‐belt deposits (CDP), clastic overbank deposits (ODP) and organic material (OP) in the succession. Furthermore, the connectedness ratio (CR) between channel belts was calculated for each cross‐section. Distinct spatial and temporal trends in the alluvial architecture were found. SBW/SBT ratios decrease by a factor of ca 4 in a downstream direction. CDP decreases from ca 0·7 (upstream) to ca 0·3 (downstream). OP increases from less than 0·05 in the upstream part of the delta to more than 0·25 in the downstream delta. ODP is approximately constant (0·4). CR is ca 0·25 upstream, which is approximately two times larger than in the downstream part of the delta. Furthermore, CDP in the downstream Rhine–Meuse delta increases after 3000 cal yr BP. These trends are attributed to variations in available accommodation space, floodplain geometry and channel‐belt size. For instance, channel belts tend to narrow in a downstream direction, which reduces SBW/SBT, CDP and CR. Tectonics cause local deviations in the general architectural trends. In addition, the positive correlation between avulsion frequency and the ratio of local to regional aggradation rate probably influenced alluvial architecture in the Rhine–Meuse delta. The Rhine–Meuse data set can be a great resource when developing more sophisticated models for alluvial architecture simulation, which eventually could lead to better characterizations of hydrocarbon reservoirs. To aid such usage of the Rhine–Meuse data set, constraints for relevant parameters are provided at the end of the paper.  相似文献   
533.
Evolution of sedimentary systems at large temporal and spatial scales cannot be scaled down to laboratory dimensions by conventional hydraulic Froude scaling. Therefore, many researchers question the validity of experiments aiming to simulate this evolution. Yet, it has been shown that laboratory experiments yield stratigraphic responses to allocyclic forcing that are remarkably similar to those in real‐world prototypes, hinting at scale independency with strong dependence on boundary conditions but weak dependence on the actual sediment transport dynamics. This paper addresses the dilemma by contrasting sediment transport rules that apply in the laboratory with those that apply in real‐world geological systems. It is demonstrated that the generation of two‐dimensional stratigraphy in a flume can be simulated numerically by the non‐linear diffusion equation. Sediment transport theory is used to demonstrate that only suspension‐dominated meandering rivers should be simulated with linear diffusion. With increasing grain‐size (coarse sand to gravel) and shallowness of river systems, the prediction of long‐term transport must be simulated by non‐linear, slope‐dependent diffusion to allow for increasing transport rates and thus change in stratigraphic style. To point out these differences in stratigraphic style, three stages in infill of accommodation have been defined here: (i) a start‐up stage, when the system is prograding to base level (e.g. the shelf edge) with no sediment flux beyond the base‐level point; (ii) a fill‐up stage, when the system is further aggrading while progressively more sediment is bypassing base level with the progression of the infill; and (iii) a keep‐up stage, when more than 90% of the input is bypassing the base level and less than 10% is used for filling the accommodation. By plotting the rate of change in flux for various degrees of non‐linearity (varying the exponent in the diffusion equation) it was found that the error between model and real‐world prototype is largest for the suspension‐dominated prototypes, although never more than 30% and only at the beginning of the fill‐up stage. The error reduces to only 10% for the non‐linear sandy‐gravelly and gravelly systems. These results are very encouraging and open up ways to calibrate numerical models of sedimentary system evolution by such experiments.  相似文献   
534.
The Granny Smith (37 t Au production) and Wallaby deposits (38 t out of a 180 t Au resource) are located northeast of Kalgoorlie, in 2.7 Ga greenstones of the Eastern Goldfields Province, the youngest orogenic belt of the Yilgarn craton, Western Australia. At Granny Smith, a zoned monzodiorite–granodiorite stock, dated by a concordant titanite–zircon U–Pb age of 2,665 ± 3 Ma, cuts across east-dipping thrust faults. The stock is fractured but not displaced and sets a minimum age for large-scale (1 km) thrust faulting (D2), regional folding (D1), and dynamothermal metamorphism in the mining district. The local gold–pyrite mineralization, controlled by fractured fault zones, is younger than 2,665 ± 3 Ma. In augite–hornblende monzodiorite, alteration progressed from a hematite-stained alkali feldspar–quartz–calcite assemblage and quartz–molybdenite–pyrite veins to a late reduced sericite–dolomite–albite assemblage. Gold-related monazite and xenotime define a U–Pb age of 2,660 ± 5 Ma, and molybdenite from veins a Re–Os isochron age of 2,661 ± 6 Ma, indicating that mineralization took place shortly after the emplacement of the main stock, perhaps coincident with the intrusion of late alkali granite dikes. At Wallaby, a NE-trending swarm of porphyry dikes comprising augite monzonite, monzodiorite, and minor kersantite intrudes folded and thrust-faulted molasse. The conglomerate and the dikes are overprinted by barren (<0.01 g/t Au) anhydrite-bearing epidote–actinolite–calcite skarn, forming a 600-m-wide and >1,600-m-long replacement pipe, which is intruded by a younger ring dike of syenite porphyry pervasively altered to muscovite + calcite + pyrite. Skarn and syenite are cut by pink biotite–calcite veins, containing magnetite + pyrite and subeconomic gold–silver mineralization (Au/Ag = 0.2). The veins are associated with red biotite–sericite–calcite–albite alteration in adjacent monzonite dikes. Structural relations and the concordant titanite U–Pb age of the skarn constrain intrusion-related mineralization to 2,662 ± 3 Ma. The main-stage gold–pyrite ore (Au/Ag >10) forms hematite-stained sericite–dolomite–albite lodes in stacked D2 reverse faults, which offset skarn, syenite, and the biotite–calcite veins by up to 25 m. The molybdenite Re–Os age (2,661 ± 10 Ma) of the ore suggests a genetic link to intrusive activity but is in apparent conflict with a monazite–xenotime U–Pb age (2,651 ± 6 Ma), which differs from that of the skarn at the 95% confidence level. The time relationships at both gold deposits are inconsistent with orogenic models invoking a principal role for metamorphic fluids released during the main phase of compression in the fold belt. Instead, mineralization is related in space and time to late-orogenic, magnetite-series, high-Mg monzodiorite–syenite intrusions of mantle origin, characterized by Mg/(Mg + FeTOTAL) = 0.31–0.57, high Cr (34–96 ppm), Ni (22–63 ppm), Ba (1,056–2,321 ppm), Sr (1,268–2,457 ppm), Th (15–36 ppm), and rare earth elements (total REE: 343–523 ppm). At Wallaby, shared Ca–K–CO2 metasomatism and Th-REE enrichment (in allanite) link Au–Ag mineralization in biotite–calcite veins to the formation of the giant epidote skarn, implicating a Th + REE-rich syenite pluton at depth as the source of the oxidized hydrothermal fluid. At Granny Smith, lead isotope data and the Rb–Th–U signature of early hematite-bearing wall-rock alteration point to fluid released by the source pluton of the differentiated alkali granite dikes.  相似文献   
535.
Autochthonous red algal structures known as coralligène de plateau occur in the modern warm‐temperate Mediterranean Sea at water depths from 20 to 120 m, but fossil counterparts are not so well‐known. This study describes, from an uplifted coastal section at Plimiri on the island of Rhodes, a 450 m long by 10 m thick Late Pleistocene red algal reef (Coralligène Facies), interpreted as being a coralligène de plateau, and its associated deposits. The Coralligène Facies, constructed mainly by Lithophyllum and Titanoderma, sits unconformably upon the Plio‐Pleistocene Rhodes Formation and is overlain by a Maerl Facies (2 m), a Mixed Siliciclastic‐Carbonate Facies (0·2 m) and an Aeolian Sand Facies (2·5 m). The three calcareous facies, of Heterozoan character, are correlated with established members in the Lindos Acropolis Formation in the north of the island, while the aeolian facies is assigned to the new Plimiri Aeolianite Formation. The palaeoenvironmental and genetic‐stratigraphic interpretations of these mixed siliciclastic‐carbonate temperate water deposits involved consideration of certain characteristics associated with siliciclastic shelf and tropical carbonate shelf models, such as vertical grain‐size trends and the stratigraphic position of zooxanthellate coral growths. Integration of these results with electron spin resonance dates of bivalve shells indicates that the Coralligène Facies was deposited during Marine Isotope Stage 6 to 5e transgressive event (ca 135 to 120 ka), in water depths of 20 to 50 m, and the overlying Maerl Facies was deposited during regression from Marine Isotope Stage 5e to 5d (ca 120 to 110 ka), at water depths of 25 to 40 m. The capping Aeolian Sand Facies, involving dual terrestrial subunits, is interpreted as having formed during each of the glacial intervals Marine Isotope Stages 4 (71 to 59 ka) and 2 (24 to 12 ka), with soil formation during the subsequent interglacial periods of Marine Isotope Stages 3 and 1, respectively. Accumulation rates of about 0·7 mm year?1 are estimated for the Coralligène Facies and minimum accumulation rates of 0·2 mm year?1 are estimated for the Maerl Facies. The existence of older red algal reefs in the Plimiri region during at least Marine Isotope Stages 7 (245 to 186 ka) and 9 (339 to 303 ka) is inferred from the occurrence of reworked coralligène‐type lithoclasts in the basal part of the section and from the electron spin resonance ages of transported bivalve shells.  相似文献   
536.
The Eucla Basin including the vast Nullarbor Plain lies on the margins of the Yilgarn, Musgrave and Gawler cratons in southern Australia and owes its distinctive landscape to a unique set of interactions between eustatic, climatic and tectonic processes over the last ~ 50 Ma. Understanding of the history of the basin and the palaeovalleys that drained from the surrounding cratons are important because they contain major mineral deposits, and the sediments derived from them contain remobilised gold, uranium, and heavy minerals. In particular, a remarkably preserved palaeoshoreline sequence along the north-eastern margin of the Eucla Basin is highly prospective for heavy mineral placer deposits. The record of marine, marginal marine, estuarine, fluvial and lacustrine environments, as constrained mainly by an extensive borehole dataset, reflects major depositional events during the Palaeocene–Early Eocene, Middle–Late Eocene, Oligocene–Early Miocene, Middle Miocene–Early Pliocene and Pliocene–Quaternary. These events reflect the key role of eustatic sea-level variation which, during highstands, inundated the craton margins, flooding palaeovalleys to up to 400 km inboard of the present coastline. However, a systematic eastward migration of the depocentre across the Eucla Basin during the Neogene, together with apparent flow reversals in a number of palaeovalley systems draining the Gawler Craton, suggest that the Eucla Basin has also been subject to differential vertical movements, expressed as a west-side up, east-side down tilting of ~ 100–200 m. This differential movement forms part of a broader north-down–southwest-up dynamic topographic tilting of the Australian continent associated with relatively fast (6–7 cm/yr) northward plate motion since fast spreading commenced in the Southern Ocean at ~ 43 Ma. We suggest that the evolving dynamic topography field has played a key role in facilitating development of placer deposits, largely through multistage, eastward reworking of near-shore sequences during highstand transgressive cycles on a progressively tilting platform under the influence of persistent westerly weather systems.  相似文献   
537.
An exceptionally large tsunami affected the coastline of southern Chile during the Pliocene. Its backflow eroded coarse beach and coastal dune sediments and redistributed them over the continental shelf and slope. Sandstone dykes and sills injected from the base of the resulting hyperconcentrated flow into underlying cohesive muds, assisted in plucking up large blocks of the latter and incorporating them into the flow. Locally, the rip-up intraclasts were fragmented further by smaller-scale injections to form a distinct breccia of angular to rounded mudstone clasts within a medium to coarse sandstone matrix. Sandstone sills in places mimic normal sedimentary beds, complete with structures resembling inverse gradation, planar laminae, as well as ripple and trough cross-lamination. These were probably formed by internal sediment flow and shear stress as the semi-liquefied sand was forcefully injected into cracks. In borehole cores, such sills can easily be misinterpreted as normal sedimentary beds, which can have important implications for hydrocarbon exploration.  相似文献   
538.
The Mordor Alkaline Igneous Complex (MAIC) is a composite intrusion comprising a body of syenite and a funnel-shaped layered mafic–ultramafic intrusion of lamprophyric parentage, the Mordor Mafic–Ultramafic Intrusion or MMUI. The MMUI is highly unusual among intrusions of lamprophyric or potassic parentage in containing primary magmatic platinum-group element (PGE)-enriched sulfides. The MMUI sequence consists largely of phlogopite-rich pyroxenitic cumulates, with an inward dipping conformable layer of olivine-bearing cumulates divisible into a number of cyclic units. Stratiform-disseminated sulfide accumulations are of two types: disseminated layers at the base of cyclic units, with relatively high PGE tenors; and patchy PGE-poor disseminations within magnetite-bearing upper parts of cyclic units. Sulfide-enriched layers at cycle bases contain anomalous platinum group element contents with grades up to 1.5 g/t Pt+Pd+Au over 1-m intervals, returning to background values of low parts per billion (ppb) on a meter scale. They correspond to reversals in normal fractionation trends and are interpreted as the result of new magma influxes into a continuously replenished magma chamber. Basal layers have decoupled Cu and PGE peaks reflecting increasing PGE tenors up-section, due to increasing R factors during the replenishment episode, or progressive mixing of between resident PGE-poor magma and more PGE-enriched replenishing magma. The presence of PGE enriched sulfides in cumulates from a lamprophyric magma implies that low-degree partial melts do not necessarily leave sulfides and PGEs in the mantle restite during partial melting. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
539.
The stratiform Cu–Co ore mineralisation in the Katangan Copperbelt consists of dispersed sulphides and sulphides in nodules and lenses, which are often pseudomorphs after evaporites. Two types of pseudomorphs can be distinguished in the nodules and lenses. In type 1 examples, dolomite precipitated first and was subsequently replaced by Cu–Co sulphides and authigenic quartz, whereas in type 2 examples, authigenic quartz and Cu–Co sulphides precipitated prior to dolomite and are coarse-grained. The sulphur isotopic composition of the copper–cobalt sulphides in the type 1 pseudomorphs is between −10.3 and 3.1‰ relative to the Vienna Canyon Diablo Troilite, indicating that the sulphide component was derived from bacterial sulphate reduction (BSR). The generation of during this process caused the precipitation and replacement of anhydrite by dolomite. A second product of BSR is the generation of H2S, resulting in the precipitation of Cu–Co sulphides from the mineralising fluids. Initial sulphide precipitation occurred along the rim of the pseudomorphs and continued towards the core. Precipitation of authigenic quartz was most likely induced by a pH decrease during sulphide precipitation. Fluid inclusion data from quartz indicate the presence of a high-salinity (8–18 eq. wt.% NaCl) fluid, possibly derived from evaporated seawater which migrated through the deep subsurface. 87Sr/86Sr ratios of dolomite in type 1 nodules range between 0.71012 and 0.73576, significantly more radiogenic than the strontium isotopic composition of Neoproterozoic marine carbonates (87Sr/86Sr = 0.7056–0.7087). This suggests intense interaction with siliciclastic sedimentary rocks and/or the granitic basement. The low carbon isotopic composition of the dolomite in the pseudomorphs (−7.02 and −9.93‰ relative to the Vienna Pee Dee Belemnite, V-PDB) compared to the host rock dolomite (−4.90 and +1.31‰ V-PDB) resulted from the oxidation of organic matter during BSR.  相似文献   
540.
Giant groove casts have been found in the upper Proterozoic to Lower Cambrian Phe Formation (Haimanta Group), a siliciclastic sandstone/shale succession in the Tethyan Zone of the Higher Himalaya tectonic unit. The grooves are among the largest linear erosion structures related to submarine mass-movements observed in the geologic record. They are up to 4 m wide, about 0.2 m deep and can be traced for more than 35 m without changing their character. The grooves are straight, subparallel to cross-cutting striations with shallow semi-circular cross-sections and well-defined superimposed minor ridges and grooves. Groove casts exist on the soles of several sandstone beds within a 73 m thick logged section, commonly associated with flute casts. Their characteristics were compared with several other types of ancient and modern submarine linear erosion structures. A sand-rich, non-channelized basin floor depositional environment is inferred from the lithofacies, the combination of sedimentary structures, the lack of coarse-grained pebbly facies, the lateral continuity of beds, and the lack of channel structures. The grooves probably formed by laminar debris flows/concentrated density flows dragging blocks of already lithified sediment across the basin floor. When the bedding is structurally rotated back to horizontal, the groove casts show consistent North–South oriented palaeocurrent trends, with South-directed palaeocurrent directions indicated by flute casts. These palaeocurrent orientations contrast with previous palaeogeographic reconstructions of this area, which propose sediment delivery from the South. We therefore suggest a new “double provenance” model for the spatial relationship of late Proterozoic to Early Cambrian strata of the Himalaya, in which Lesser and Tethyan Himalayan age-equivalent sediment was deposited in a connected basin, where the former received detritus from the South, and the latter from a hitherto unknown source in the North. One possible candidate for this northern source is the South China Block and an associated Neoproterozoic volcanic arc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号