首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93444篇
  免费   1886篇
  国内免费   1477篇
测绘学   2432篇
大气科学   7357篇
地球物理   19347篇
地质学   32025篇
海洋学   8206篇
天文学   20559篇
综合类   362篇
自然地理   6519篇
  2021年   757篇
  2020年   850篇
  2019年   915篇
  2018年   1676篇
  2017年   1636篇
  2016年   2174篇
  2015年   1536篇
  2014年   2210篇
  2013年   4665篇
  2012年   2563篇
  2011年   3650篇
  2010年   3164篇
  2009年   4360篇
  2008年   3879篇
  2007年   3675篇
  2006年   3697篇
  2005年   2978篇
  2004年   3006篇
  2003年   2772篇
  2002年   2629篇
  2001年   2338篇
  2000年   2282篇
  1999年   1945篇
  1998年   1969篇
  1997年   1911篇
  1996年   1642篇
  1995年   1585篇
  1994年   1415篇
  1993年   1305篇
  1992年   1242篇
  1991年   1088篇
  1990年   1326篇
  1989年   1127篇
  1988年   1016篇
  1987年   1243篇
  1986年   1071篇
  1985年   1316篇
  1984年   1567篇
  1983年   1452篇
  1982年   1342篇
  1981年   1275篇
  1980年   1142篇
  1979年   1091篇
  1978年   1115篇
  1977年   1047篇
  1976年   975篇
  1975年   924篇
  1974年   945篇
  1973年   956篇
  1972年   573篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
The three-dimensional (3-D) resection problem is usually solved by first obtaining the distances connecting the unknown point P{X,Y,Z} to the known points Pi{Xi,Yi,Zi}i=1,2,3 through the solution of the three nonlinear Grunert equations and then using the obtained distances to determine the position {X,Y,Z} and the 3-D orientation parameters {,, }. Starting from the work of the German J. A. Grunert (1841), the Grunert equations have been solved in several substitutional steps and the desire as evidenced by several publications has been to reduce these number of steps. Similarly, the 3-D ranging step for position determination which follows the distance determination step involves the solution of three nonlinear ranging (`Bogenschnitt') equations solved in several substitution steps. It is illustrated how the algebraic technique of Groebner basis solves explicitly the nonlinear Grunert distance equations and the nonlinear 3-D ranging (`Bogenschnitt') equations in a single step once the equations have been converted into algebraic (polynomial) form. In particular, the algebraic tool of the Groebner basis provides symbolic solutions to the problem of 3-D resection. The various forward and backward substitution steps inherent in the classical closed-form solutions of the problem are avoided. Similar to the Gauss elimination technique in linear systems of equations, the Groebner basis eliminates several variables in a multivariate system of nonlinear equations in such a manner that the end product normally consists of a univariate polynomial whose roots can be determined by existing programs e.g. by using the roots command in Matlab.Acknowledgments.The first author wishes to acknowledge the support of JSPS (Japan Society of Promotion of Science) for the financial support that enabled the completion of the write-up of the paper at Kyoto University, Japan. The author is further grateful for the warm welcome and the good working atmosphere provided by his hosts Professors S. Takemoto and Y. Fukuda of the Department of Geophysics, Graduate School of Science, Kyoto University, Japan.  相似文献   
962.
GI Science, Disasters, and Emergency Management   总被引:6,自引:1,他引:6  
Societal responses to disasters begin with the initial post‐event rescue and relief operations, followed by recovery, reconstruction, and then transcend into mitigation actions including the development of pre‐impact preparedness measures, collectively known as the emergency response cycle. This paper highlights some of the applications of GI Science to the emergency response cycle, citing examples from natural hazards and from the World Trade Center disaster on 11th September 2001. More importantly, the paper describes some of the constraints on the utilization of GI Science by the practitioner community: understandable user interfaces; data quantity, quality, and integration; real‐time data and information. Finally, the paper suggests some important GI Science research areas based on the needs of the disasters and emergency management research and practitioner communities.  相似文献   
963.
J. Li 《Journal of Geodesy》2002,76(4):226-231
 A formula for computing the gravity disturbance and gravity anomaly from the second radial derivative of the disturbing potential is derived in detail using the basic differential equation with spherical approximation in physical geodesy and the modified Poisson integral formula. The derived integral in the space domain, expressed by a spherical geometric quantity, is then converted to a convolution form in the local planar rectangular coordinate system tangent to the geoid at the computing point, and the corresponding spectral formulae of 1-D FFT and 2-D FFT are presented for numerical computation. Received: 27 December 2000 / Accepted: 3 September 2001  相似文献   
964.
The nonlinear adjustment of GPS observations of type pseudo-ranges is performed in two steps. In step one a combinatorial minimal subset of observations is constructed which is rigorously converted into station coordinates by means of Groebner basis algorithm or the multipolynomial resultant algorithm. The combinatorial solution points in a polyhedron are reduced to their barycentric in step two by means of their weighted mean. Such a weighted mean of the polyhedron points in ℝ3 is generated via the Error Propagation law/variance-covariance propagation. The Fast Nonlinear Adjustment Algorithm (FNon Ad Al) has been already proposed by Gauss whose work was published posthumously and Jacobi (1841). The algorithm, here referred to as the Gauss-Jacobi Combinatorial algorithm, solves the over-determined GPS pseudo-ranging problem without reverting to iterative or linearization procedure except for the second moment (Variance-Covariance propagation). The results compared well with the solutions obtained using the linearized least squares approach giving legitimacy to the Gauss-Jacobi combinatorial procedure. ? 2002 Wiley Periodicals, Inc.  相似文献   
965.
 The new GFZ/GRGS gravity field models GRIM5-S1 and GRIM5-C1, currently used as initial models for the CHAMP mission, have been compared with other recent models (JGM 3, EGM 96) for radial orbit accuracy (by means of latitude lumped coefficients) in computations on altimetry satellite orbits. The bases for accuracy judgements are multi-year averages of crossover sea height differences from Geosat and ERS 1/2 missions. This radially sensitive data is fully independent of the data used to develop these gravity models. There is good agreement between the observed differences in all of the world's oceans and projections of the same errors from the scaled covariance matrix of their harmonic geopotential coefficients. It was found that the tentative scale factor of five for the formal standard deviations of the harmonic coefficients of the new GRIM fields is justified, i.e. the accuracy estimates, provided together with the GRIM geopotential coefficients, are realistic. Received: 20 February 2001 / Accepted: 24 October 2001  相似文献   
966.
 In this paper, two approaches for measuring residential group preferences, based on the method of Hierarchical Information Integration (HII), are compared. In particular, the hypothesis that group-based preference models estimated from integrated HII experiments better predict group preferences than part individual-based group models estimated from classical HII experiments is tested. To that effect, the models' ability to predict group preferences for new residential alternatives is compared in a study of residential preferences of co-ops. Results indicate that integrated HII group experiments indeed result in better predictions of residential preferences.  相似文献   
967.
968.
  The Western Alps are among the best studied collisional belts with both detailed structural mapping and also crustal geophysical investigations such as the ECORS and EGT seismic profile. By contrast, the present-day kinematics of the belt is still largely unknown due to small relative motions and the insufficient accuracy of the triangulation data. As a consequence, several tectonic problems still remain to be solved, such as the amount of N–S convergence in the Occidental Alps, the repartition of the deformation between the Alpine tectonic units, and the relation between deformation and rotation across the Alpine arc. In order to address these problems, the GPS ALPES group, made up of French, Swiss and Italian research organizations, has achieved the first large-scale GPS surveys of the Western Alps. More than 60 sites were surveyed in 1993 and 1998 with a minimum observation of 3 days at each site. GPS data processing has been done by three independent teams using different software. The different solutions have horizontal repeatabilities (N–E) of 4–7 mm in 1993 and 2–3 mm in 1998 and compare at the 3–5-mm level in position and 2-mm/yr level in velocity. A comparison of 1993 and 1998 coordinates shows that residual velocities of the GPS marks are generally smaller than 2 mm/yr, precluding a detailed tectonic interpretation of the differential motions. However, these data seem to suggest that the N–S compression of the Western Alps is quite mild (less than 2 mm/yr) compared to the global convergence between the African and Eurasian plate (6 mm/yr). This implies that the shortening must be accomodated elsewhere by the deformation of the Maghrebids and/or by rotations of Mediterranean microplates. Also, E–W velocity components analysis supports the idea that E–W extension exists, as already suggested by recent structural and seismotectonic data interpretation. Received: 27 November 2000 / Accepted: 17 September 2001  相似文献   
969.
A new similar singledifference mathematical model ( SS-DM) and its corresponding algorithm are advanced to solve the deformation of monitoring point directly in single epoch. The method for building the SSDM is introduced in detail, and the main error sources affecting the accuracy of deformation measurement are analyzed briefly, and the basic algorithm and steps of solving the deformation are discussed. In order to validate the correctness and the accuracy of the similar single-difference model, the test with five dual frequency receivers is carried out on a slideway which moved in plane in Feb. 2001. In the test, five sessions are observed. The numerical results of test data show that the advanced model is correct.  相似文献   
970.
The goal of this contribution is to focus on improving the quality of gravity field models in the form of spherical harmonic representation via alternative configuration scenarios applied in future gravimetric satellite missions. We performed full-scale simulations of various mission scenarios within the frame work of the German joint research project “Concepts for future gravity field satellite missions” as part of the Geotechnologies Program, funded by the German Federal Ministry of Education and Research and the German Research Foundation. In contrast to most previous simulation studies including our own previous work, we extended the simulated time span from one to three consecutive months to improve the robustness of the assessed performance. New is that we performed simulations for seven dedicated satellite configurations in addition to the GRACE scenario, serving as a reference baseline. These scenarios include a “GRACE Follow-on” mission (with some modifications to the currently implemented GRACE-FO mission), and an in-line “Bender” mission, in addition to five mission scenarios that include additional cross-track and radial information. Our results clearly confirm the benefit of radial and cross-track measurement information compared to the GRACE along-track observable: the gravity fields recovered from the related alternative mission scenarios are superior in terms of error level and error isotropy. In fact, one of our main findings is that although the noise levels achievable with the particular configurations do vary between the simulated months, their order of performance remains the same. Our findings show also that the advanced pendulums provide the best performance of the investigated single formations, however an accuracy reduced by about 2–4 times in the important long-wavelength part of the spectrum (for spherical harmonic degrees ${<}50$ ), compared to the Bender mission, can be observed. Concerning state-of-the-art mission constraints, in particular the severe restriction of heterodyne lasers on maximum range-rates, only the moderate Pendulum and the Bender-mission are beneficial options, of course in addition to GRACE and GRACE-FO. Furthermore, a Bender-type constellation would result in the most accurate gravity field solution by a factor of about 12 at long wavelengths (up to degree/order 40) and by a factor of about 200 at short wavelengths (up to degree/order 120) compared to the present GRACE solution. Finally, we suggest the Pendulum and the Bender missions as candidate mission configurations depending on the available budget and technological progress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号