首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70024篇
  免费   1273篇
  国内免费   591篇
测绘学   1766篇
大气科学   5665篇
地球物理   14816篇
地质学   23158篇
海洋学   5869篇
天文学   15609篇
综合类   210篇
自然地理   4795篇
  2021年   417篇
  2020年   531篇
  2019年   531篇
  2018年   1076篇
  2017年   1046篇
  2016年   1558篇
  2015年   1136篇
  2014年   1610篇
  2013年   3473篇
  2012年   1684篇
  2011年   2416篇
  2010年   2125篇
  2009年   3110篇
  2008年   2798篇
  2007年   2510篇
  2006年   2552篇
  2005年   2221篇
  2004年   2302篇
  2003年   2118篇
  2002年   2026篇
  2001年   1846篇
  2000年   1807篇
  1999年   1555篇
  1998年   1565篇
  1997年   1519篇
  1996年   1336篇
  1995年   1248篇
  1994年   1133篇
  1993年   1034篇
  1992年   972篇
  1991年   830篇
  1990年   1033篇
  1989年   879篇
  1988年   776篇
  1987年   958篇
  1986年   835篇
  1985年   1047篇
  1984年   1214篇
  1983年   1166篇
  1982年   1051篇
  1981年   1005篇
  1980年   863篇
  1979年   849篇
  1978年   901篇
  1977年   811篇
  1976年   775篇
  1975年   732篇
  1974年   730篇
  1973年   740篇
  1972年   457篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
The CO2 migrated from deeper to shallower layers may change its phase state from supercritical state to gaseous state (called phase transition). This phase transition makes both viscosity and density of CO2 experience a sharp variation, which may induce the CO2 further penetration into shallow layers. This is a critical and dangerous situation for the security of CO2 geological storage. However, the assessment of caprock sealing efficiency with a fully coupled multi-physical model is still missing on this phase transition effect. This study extends our previous fully coupled multi-physical model to include this phase transition effect. The dramatic changes of CO2 viscosity and density are incorporated into the model. The impacts of temperature and pressure on caprock sealing efficiency (expressed by CO2 penetration depth) are then numerically investigated for a caprock layer at the depth of 800 m. The changes of CO2 physical properties with gas partial pressure and formation temperature in the phase transition zone are explored. It is observed that phase transition revises the linear relationship of CO2 penetration depth and time square root as well as penetration depth. The real physical properties of CO2 in the phase transition zone are critical to the safety of CO2 sequestration. Pressure and temperature have different impact mechanisms on the security of CO2 geological storage.  相似文献   
992.
993.
International Journal of Earth Sciences - Stratigraphically well-defined volcanic rocks in Palaeozoic volcano-sedimentary units of the Frankenwald area (Saxothuringian Zone, Variscan Orogen) were...  相似文献   
994.
International Journal of Earth Sciences - The Western Sierras Pampeanas (WSP) of Argentina record a protracted geological history from the Mesoproterozoic assembly of the Rodinia supercontinent to...  相似文献   
995.
Chen  G. J.  Li  X. L.  Sillen  X.  Levasseur  S. 《Acta Geotechnica》2023,18(1):127-147
Acta Geotechnica - In the HADES underground research laboratory in Belgium, a large-scale PRACLAY Heater test and a small-scale ATLAS Heater test are performed to examine the...  相似文献   
996.
Acta Geotechnica - The most common cause of slope instability is intense or sustained rainfall, which may induce reduction in soil suction, and thus, shear strength. Capillary barrier systems...  相似文献   
997.
Crystal-plastic olivine deformation to produce subgrain boundaries composed of edge dislocations is an inevitable consequence of asthenospheric mantle flow. Although crystal-plastic deformation and serpentinization are spatio-temporally decoupled, we identified compositional readjustments expressed on the micrometric level as a striped Fe-enriched ( [`(X)]\textFe \bar{X}_{\text{Fe}}  = 0.24 ± 0.02 (zones); 0.12 ± 0.02 (bulk)) or Fe-depleted ( [`(X)]\textFe \bar{X}_{\text{Fe}}  = 0.10 ± 0.01 (zones); 0.13 ± 0.01 (bulk)) zoning in partly serpentinized olivine grains from two upper mantle sections in Norway. Focused ion beam sample preparation combined with transmission electron microscopy (TEM) and aberration-corrected scanning TEM, enabling atomic-level resolved electron energy-loss spectroscopic line profiling, reveals that every zone is immediately associated with a subgrain boundary. We infer that the zonings are a result of the environmental Fe2+Mg−1 exchange potential during antigorite serpentinization of olivine and the drive toward element exchange equilibrium. This is facilitated by enhanced solid-state diffusion along subgrain boundaries in a system, which otherwise re-equilibrates via dissolution-reprecipitation. Fe enrichment or depletion is controlled by the silica activity imposed on the system by the local olivine/orthopyroxene mass ratio, temperature and the effect of magnetite stability. The Fe-Mg exchange coefficients K\textD\textAtg/\textOl K_{\text{D}}^{{{\text{Atg}}/{\text{Ol}}}} between both types of zoning and antigorite display coalescence toward exchange equilibrium. With both types of zoning, Mn is enriched and Ni depleted compared with the unaffected bulk composition. Nanometer-sized, heterogeneously distributed antigorite precipitates along olivine subgrain boundaries suggest that water was able to ingress along them. Crystallographic orientation relationships gained via electron backscatter diffraction between olivine grain domains and different serpentine vein generations support the hypothesis that serpentinization was initiated along olivine subgrain boundaries.  相似文献   
998.
This paper presents a comparison of near-fault and far-fault ground motion effects on geometrically nonlinear earthquake behavior of suspension bridges. Bo?azi?i (The First Bosporus) and Fatih Sultan Mehmet (Second Bosporus) suspension bridges built in Istanbul, Turkey, are selected as numerical examples. Both bridges have almost the same span. While Bo?azi?i Suspension Bridge has inclined hangers, Fatih Sultan Mehmet Suspension Bridge has vertical hangers. Geometric nonlinearity including P-delta effects from self-weight of the bridges is taken into account in the determination of the dynamic behavior of the suspension bridges for near-fault and far-fault ground motions. Near-fault and far-fault strong ground motion records, which have approximately identical peak ground accelerations, of 1999 Chi-Chi, 1999 Kocaeli, and 1979 Imperial Valley earthquakes are selected for the analyses. Displacements and internal forces of the bridges are determined using the finite element method including geometric nonlinearity. The displacements and internal forces obtained from the dynamic analyses of suspension bridges subjected to each fault effect are compared with each other. It is clearly seen that near-fault ground motions are more effective than far-fault ground motion on the displacements and internal forces such as bending moment, shear force and axial forces of the suspension bridges.  相似文献   
999.
A FEFLOW three-dimensional (3D) groundwater model is developed to enhance the understanding of groundwater processes in the complex alluvial stratigraphy of Maules Creek Catchment (New South Wales, Australia). The aquifer vertical heterogeneity is replicated by indexing 204 lithological logs into units of high or low hydraulic conductivity, and by developing a 3D geological conceptual model with a vertical resolution based on the average lithological unit thickness for the region. The model mesh is populated with the indexed geology using nearest neighbour gridding. The calibrated model is successful in simulating the observed flow dynamics and in quantifying the important water-budget components. This indicates that the lateral groundwater flow from the mountainous region is the main inflow component of the system. Under natural conditions, the Namoi River acts as a sink of water, but groundwater abstraction increasingly removes a large amount of water each year causing dewatering of the system. The pumping condition affects the river–aquifer interaction by reversing the flow, from gaining to losing river conditions during the simulation period. The procedure is relevant for the development of groundwater models of heterogeneous systems in order to improve the understanding of the interplay between aquifer architecture and groundwater processes.  相似文献   
1000.
Brittle failure is common in the Devonian to Permian rocks in the Northern Hastings Block (NHB) and is manifested by faults of different orientation and kinematic histories, but the timing of fault movement is not well defined. In this study, faults in the NHB were analysed with the map pattern of cross-cutting faults used to estimate the relative time of movement and relationship to other faults. We defined five episodes of faulting or fault reactivation that affected the NHB. The Yarras Fault System on the southwestern side of the NHB and the Parrabel Fault and related faults on the eastern side of the NHB are the two major fault systems responsible for transporting and rotating the NHB in the late Carboniferous. Faults on the eastern, northeastern and northern part of Parrabel Dome started and stopped moving after emplacement of the Hastings Block and before the intrusion of the Werrikimbe Triassic granitoids. We suggested that the movement on the major bounding faults is related to the accommodation of the NHB to the folding and cleavage development in the adjoining Nambucca Block, and is associated with the earliest part of the Hunter–Bowen Orogeny. Limited dextral movement on the extensions of the Taylors Arm Fault System caused minor displacements in the northeastern part of the NHB during the Late Triassic. Some small faults cut the Triassic granitoids or Triassic Lorne Basin sediments indicating tectonic activity continued post-Triassic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号