首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71964篇
  免费   1334篇
  国内免费   530篇
测绘学   1838篇
大气科学   5649篇
地球物理   15712篇
地质学   23358篇
海洋学   6061篇
天文学   16105篇
综合类   164篇
自然地理   4941篇
  2021年   455篇
  2020年   601篇
  2019年   597篇
  2018年   1179篇
  2017年   1149篇
  2016年   1700篇
  2015年   1252篇
  2014年   1686篇
  2013年   3575篇
  2012年   1793篇
  2011年   2571篇
  2010年   2195篇
  2009年   3198篇
  2008年   2885篇
  2007年   2555篇
  2006年   2634篇
  2005年   2297篇
  2004年   2351篇
  2003年   2195篇
  2002年   2078篇
  2001年   1873篇
  2000年   1852篇
  1999年   1580篇
  1998年   1576篇
  1997年   1545篇
  1996年   1317篇
  1995年   1261篇
  1994年   1165篇
  1993年   1038篇
  1992年   988篇
  1991年   838篇
  1990年   1046篇
  1989年   884篇
  1988年   788篇
  1987年   957篇
  1986年   848篇
  1985年   1065篇
  1984年   1215篇
  1983年   1164篇
  1982年   1059篇
  1981年   1014篇
  1980年   871篇
  1979年   859篇
  1978年   912篇
  1977年   821篇
  1976年   770篇
  1975年   732篇
  1974年   730篇
  1973年   747篇
  1972年   467篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Using inverse methods a circulation for a new section along 32°S in the Indian Ocean is derived with a maximum in the overturning stream function (or deep overturning) of 10.3 Sv at 3310 m. Shipboard and Lowered Acoustic Doppler Current Profiler (ADCP) data are used to inform the choice of reference level velocity for the initial geostrophic field. Our preferred solution includes a silicate constraint (−312 ± 380 kmol s−1) consistent with an Indonesian throughflow of 12 Sv. The overturning changes from 12.3 Sv at 3270 m when the silicate constraint is omitted to 10.3 Sv when it is included. The deep overturning varies by only ±0.7 Sv as the silicate constraint varies from +68 to −692 kmol s−1, and by ±0.3 Sv as the net flux across the section, driven by the Indonesian throughflow, varies from −7 to −17 Sv with an appropriately scaled silicate flux constraint. Thus, the overturning is insensitive to the size of the Indonesian throughflow and silicate constraint within their apriori uncertainties. We find that the use of the ADCP data adds significant detail to the horizontal circulation. These resolved circulations include the Agulhas Undercurrent, deep cyclonic gyres and deep fronts, features evidenced by long term integrators of the flow such as current meter and float measurements as well as water properties.  相似文献   
992.
We observed the onshore migration (3.5 m/day) of a nearshore sandbar at Tairua Beach, New Zealand during 4 days of low-energy wave conditions. The morphological observations, together with concurrent measurements of waves and suspended sediment concentrations, were used to test a coupled, wave-averaged, cross-shore model. Because of the coarse bed material and the relatively low-energy conditions, the contribution of the suspended transport to the total transport was predicted and observed to be negligible. The model predicted the bar to move onshore because of the feedback between near-bed wave skewness, bedload, and the sandbar under weakly to non-breaking conditions at high tide. The predicted bathymetric evolution contrasts, however, with the observations that the bar migrated onshore predominantly at low tide. Also, the model flattened the bar, while in the observations the sandbar retained its steep landward-facing flank. A comparison between available observations and numerical simulations suggests that onshore propagating surf zone bores in very shallow water (< 0.25 m) may have been responsible for most of the observed bar behaviour. These processes are missing from the applied model and, given that the observed conditions can be considered typical of very shallow sandbars, highlight a priority for further field study and model development. The possibility that the excess water transported by the bores across the bar was channelled alongshore to near-by rip-channels further implies that traditional cross-shore measures to judge the applicability of a cross-shore morphodynamic model may be misleading.  相似文献   
993.
This paper is concerned with the diffraction of water waves by offshore structures, with the ultimate aim of proposing tools for guiding airgap design. The diffraction of monochromatic waves by an array of four bottom mounted cylinders and a gravity-based structure is studied in detail using linear and second order theory. The phenomenon of near-trapping is investigated, allowing guidelines for airgap design to be established. When contemplating airgap design, however, it is crucially important that consideration is given to the largest waves in a sea state. Therefore, in this study a design wave, called NewWave, is proposed as a realistic model for large ocean waves and is used as the incident wave field in the wave-structure diffraction analysis.  相似文献   
994.
An eddy-resolving numerical simulation for the Peru–Chile system between 1993 and 2000 is analyzed, mainly for the 1997–1998 El Niño. Atmospheric and lateral oceanic forcings are realistic and contain a wide range of scales from days to interannual. The solution is validated against altimetric observations and the few in situ observations available. The simulated 1997–1998 El Niño closely resembles the real 1997–1998 El Niño in its time sequence of events. The two well-marked, sea-level peaks in May–June and November–December 1997 are reproduced with amplitudes close to those observed. Other sub-periods of the El Niño seem to be captured adequately. Simple dynamical analyses are performed to explain the 1997–1998 evolution of the upwelling in the model. The intensity of the upwelling appears to be determined by an interplay between alongshore, poleward advection (related to coastal trapped waves) and wind intensity, but also by the cross-shore geostrophic flow and distribution of the water masses on a scale of 1000 km or more (involving Rossby waves westward propagation and advection from equatorial currents). In particular, the delay of upwelling recovery until fall 1998 (i.e., well after the second El Niño peak) is partly due to the persistent advection of offshore stratified water toward the coast of Peru. Altimetry data suggest that these interpretations of the numerical solution also apply to the real ocean.  相似文献   
995.
The temporal and spatial variability of dissolved inorganic phosphate (DIP), nitrogen (DIN), carbon (DIC) and dissolved organic carbon (DOC) were studied in order to determine the net ecosystem metabolism (NEM) of San Diego Bay (SDB), a Mediterranean-climate lagoon. A series of four sampling campaigns were carried out during the rainy (January 2000) and the dry (August 2000 and May and September 2001) seasons. During the dry season, temperature, salinity and DIP, DIC and DOC concentrations increased from oceanic values in the outer bay to higher values at the innermost end of the bay. DIP, DIC and DOC concentrations showed a clear offset from conservative mixing implying production of these dissolved materials inside the bay. During the rainy season, DIP and DOC increased to the head, whereas salinity decreased toward the mouth due to land runoff and river discharges. The distributions of DIP and DOC also showed a deviation from conservative mixing in this season, implying a net addition of these dissolved materials during estuarine mixing within the bay. Mass balance calculations showed that SDB consistently exported DIP (2.8–9.8 × 103 mol P d−1), DIC (263–352 × 103 mol C d−1) and DOC (198–1233 × 103 mol C d−1), whereas DIN (5.5–18.2 × 103 mol N d−1) was exported in all samplings except in May 2001 when it was imported (8.6 × 103 mol N d−1). The DIP, DIC and DOC export rates along with the strong relationship between DIP, DIC or DOC and salinity suggest that intense tidal mixing plays an important role in controlling their distributions and that SDB is a source of nutrients and DOC to the Southern California Bight. Furthermore, NEM ranged from −8.1 ± 1.8 mmol C m−2 d−1 in September to −13.5 ± 5.8 mmol C m−2 d−1 in January, highlighting the heterotrophic character of SDB. In order to explain the net heterotrophy of this system, we postulate that phytoplankton-derived particulate organic matter, stimulated by upwelling processes in the adjacent coastal waters, is transported into the bay, retained and then remineralized within the system. Our results were compared with those reported for the heterotrophic hypersaline coastal lagoons located in the semi-arid coast of California–Baja California, and with those autotrophic hypersaline systems found in the semi-arid areas of Australia. We point out that the balance between autotrophy and heterotrophy in inverse estuaries is dependent on net external inputs of either inorganic nutrients or organic matter as it has been indicated for positive estuaries.  相似文献   
996.
The variability of bottom dissolved oxygen (DO) in Long Island Sound, New York, is examined using water quality monitoring data collected by the Connecticut Department of Environmental Protection from 1995 to 2004. Self-organizing map analysis indicates that hypoxia always occurs in the Narrows during summer and less frequently in the Western and the Central Basins. The primary factor controlling the bottom DO, changes spatially and temporally. For non-summer seasons, the levels of bottom DO are strongly associated with water temperature, which means DO availability is primarily driven by solubility. During summer, stratification intensifies under weak wind conditions and bottom DO starts to decrease and deviate from the saturation level except for stations in the Eastern Basin. For the westernmost and shallow (<15 m) stations, bottom DO is correlated with the density stratification (represented by difference between surface and bottom density). In contrast, at deep stations (>20 m), the relationship between oxygen depletion and stratification is not significant. For stations located west of the Central Basin, bottom DO continues to decrease during summer until it reaches its minimum when bottom temperature is around 19–20 °C. In most cases the recovery to saturation levels at the beginning of fall is fast, but not necessarily associated with increased wind mixing. Therefore, we propose that the DO recovery may be a manifestation of either the reduced microbial activity combined with the depletion of organic matter or horizontal exchange. Hypoxic volume is weakly correlated to the summer wind speed, spring total nitrogen, spring chlorophyll a, and maximum river discharge. When all variables are combined in a multiple regression, the coefficient of determination (r2) is 0.92. Surprisingly, the weakest variable is the total nitrogen, because when it is excluded the coefficient r2 only drops to 0.84. Spring bloom seems to be an important source of organic carbon pool and biological uptake of oxygen plays a more crucial role in the seasonal evolution of bottom DO than previously thought. Our results indicate that the reassessment phase of the Long Island Sound Total Maximum Daily Load policy on nitrogen loading will most likely fail, because it ignores the contributions of the spring organic carbon pool and river discharge. Also, it is questionable whether the goal of 58.5% anthropogenic nitrogen load reduction is enough.  相似文献   
997.
Shorebirds feed primarily on tidal flats, and their distribution over these flats is influenced by their prey and abiotic factors. These factors act by influencing the distribution and abundance of the prey, or the shorebirds ability to exploit it. The aims of this study were to investigate the low tide foraging distribution of shorebirds at four sites within the Robbins Passage wetlands, and the environmental and invertebrate factors that may influence their distribution. The greatest densities and number of shorebirds were found at Shipwreck Point and East Inlet. The shorebirds within-site distribution was also non-random, with the shorebirds present in greatest densities at the water's edge and low intertidal stratum, although this varied among species. Generally, on a small spatial scale, invertebrate diversity was positively correlated, and seagrass leaf mass was negatively correlated, with shorebird feeding density. On a large spatial scale, invertebrate biomass and seagrass root mass were positively correlated with shorebird feeding density. Invertebrate biomass and seagrass root mass explained 71% of the variance in total shorebird feeding density on the tidal flats. The variation in shorebird feeding density and diversity was therefore partly explained by invertebrate diversity and biomass, as well as the environmental factors seagrass roots and leaf mass and tidal flat area, although the strength of these relationships was influenced by the two different spatial scales of the study. The strength of the relationships between shorebird feeding density and the invertebrate and environmental variables was stronger on a large spatial scale. The presence of seagrass may have influenced shorebird-feeding density by affecting the invertebrate abundance and composition or the shorebirds ability to detect and capture their prey. The area of the tidal flat had opposing effects on the shorebird species. These results can be used to assist in the development of management plans for the Robbins Passage wetlands and the conservation of important shorebird areas.  相似文献   
998.
This paper demonstrates the importance of advective transport of water through permeable estuarine and salt marsh sediments. This transport delivers significant quantities of radium and barium to the coastal ocean; and, in some cases may remove significant quantities of uranium. These conclusions are based on repeated analyses of seven river–estuarine systems from North Carolina to Florida. Fluxes of radium and barium from these river systems are shown to be inadequate to balance the dissolved inventories of these elements in the South Atlantic Bight. The strong interactions that occur between surface and subsurface waters as these rivers encounter coastal marshes lead us to consider these river mouths as marsh-dominated in terms of their chemical fluxes to the ocean. Such interactions between the river and coastal marsh must be considered when estimating fluxes of material between the land and ocean.  相似文献   
999.
In the recent paper by J.P. Le Roux [Coastal Engineering 54 (2007) 271–277], the author provides a simplified approach to calculating the depth, length, and height of waves at the onset of depth-induced breaking (i.e. at the breaker line). However, the proposed methodology and the comparisons to other methods suffer from a large number of inconsistencies and basic calculation errors. In addition, there are a number of erroneous physical interpretations and many of the conclusions are based on erroneous data. The remaining conclusions are either not new or based on circular logic, such as to render them moot. In the following, we will not attempt to point out all the errors or inconsistencies that we found, instead we focus on major points of contention.  相似文献   
1000.
An intense deep chlorophyll layer in the Sargasso Sea was reported near the center of an anticyclonic mode-water eddy by McGillicuddy et al. [2007. Eddy–wind interactions stimulate extraordinary mid-ocean plankton blooms, Science, accepted]. The high chlorophyll was associated with anomalously high concentrations of diatoms and with a maximum in the vertical profile of 14C primary productivity. Here we report tracer measurements of the vertical advection and turbulent diffusion of deep-water nutrients into this chlorophyll layer. Tracer released in the chlorophyll layer revealed upward motion relative to isopycnal surfaces of about 0.4 m/d, due to solar heating and mixing. The density surfaces themselves shoaled by about 0.1 m/d. The upward flux of dissolved inorganic nitrogen, averaged over 36 days, was approximately 0.6 mmol/m2/d due to both upwelling and mixing. This flux is about 40% of the basin wide, annually averaged, nitrogen flux required to drive the annual new production in the Sargasso Sea, estimated from the oxygen cycle in the euphotic zone, the oxygen demand below the euphotic zone, and from the 3He excess in the mixed layer. The observed upwelling of the fluid was consistent with theoretical models [Dewar, W.K., Flierl, G.R., 1987. Some effects of wind on rings. Journal of Physical Oceanography 17, 1653–1667; Martin, A.P., Richards, K.J., 2001. Mechanisms for vertical nutrient transport within a North Atlantic mesoscale eddy. Deep-Sea Research II 48, 757–773] in which eddy surface currents cause spatial variations in surface stress. The diapycnal diffusivity at the base of the euphotic zone was 3.5±0.5×10−5 m2/s. Diapycnal mixing was probably enhanced over more typical values by the series of storms passing over the eddy during the experiment and may have been enhanced further by the trapping of near-inertial waves generated within the eddy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号