首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   13篇
  国内免费   7篇
测绘学   4篇
大气科学   5篇
地球物理   26篇
地质学   67篇
海洋学   5篇
天文学   7篇
综合类   5篇
  2024年   1篇
  2023年   2篇
  2022年   2篇
  2021年   9篇
  2020年   9篇
  2019年   2篇
  2018年   19篇
  2017年   8篇
  2016年   16篇
  2015年   8篇
  2014年   12篇
  2013年   13篇
  2012年   3篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   4篇
  2007年   1篇
  2005年   2篇
  1998年   1篇
  1996年   1篇
  1986年   2篇
排序方式: 共有119条查询结果,搜索用时 671 毫秒
81.
Inverse Problem in Ground Water: Model Development   总被引:1,自引:0,他引:1  
  相似文献   
82.
伊犁河谷是新疆地区暴雨多发且暴雨强度最强的地区。本文以该地区的一次特大暴雨过程为例,利用观测资料以及WRF高分辨率数值模拟结果对该次暴雨过程的环流背景及不稳定条件进行了分析。结果表明:(1)此次降水过程发生在对流层高层南亚高压“双体型”,中层中高纬度“两脊一槽”以及两个中亚低涡发展移动的环流形势下。在伊犁河谷特殊的向西开口的喇叭口地形作用下,中心位于哈萨克斯坦的中亚低涡导致伊犁河谷低层为偏西风,中心位于塔里木盆地的中亚低涡使得伊犁河谷中层为偏东风,导致伊犁河谷内中低层水平风的垂直切变增强;伊犁河谷内,地形及哈萨克斯坦中亚低涡环流的共同作用形成了低空辐合线,辐合线附近形成的辐合区正好与高空急流辐散区垂直叠加,引发河谷内的上升运动增强。低层西风将水汽输送进河谷,并在河谷内迎风坡附近堆积,上升运动增强后导致河谷内堆积的水汽得以抬升。(2)WRF模拟结果分析显示,散度分布、垂直风切变、水汽及热力层结分布等对降水产生均有重要贡献。通过对湿位涡垂直及水平分量的分析得出热力层结影响的对流不稳定对前期降水的产生有影响,同时,垂直风切变影响的对称不稳定对降水增强维持有重要作用。位势散度分析进一步指示出整个降水区低层的对流不稳定主要是由于位势散度的垂直切变部分造成,而位势散度的散度部分能加强河谷内小地形背风坡处的对流不稳定,说明整个降水演变过程中,动热力因子的相互作用共同影响了降水强度和落区。  相似文献   
83.
Climate anomalies can cause natural disasters such as severe fires and floods on peatlands in South Sumatra. Factors that affect the natural disasters on peatlands include rainfall, groundwater level, and soil moisture. This paper aims to study the effect of the climate anomalies in 2019 and 2020 and effects of these influencing factors on peatlands in South Sumatra. The data used in this study was derived from in-situ measurement at two SESAME’s measurement stations in the study area. The results indicate that in the 2019 dry season, the rainfall was minimal, the lowest groundwater table depth was ?1.14 m and the lowest soil moisture was 3.4%. In the 2020 dry season, rainfall was above the monthly average of 100 mm, the lowest groundwater level was ?0.44 m, and the lowest soil moisture was 26.64%. There is also a strong correlation between soil moisture and groundwater table depth. The correlation between the two is stronger when there is less rainfall.  相似文献   
84.
85.
The reservoir character of the Cretaceous sand is evaluated in Lower Indus Basin, Pakistan where water flooding is very common. Thus, prediction of subsurface structure, lithology and reservoir characterization is fundamental for a successful oil or gas discovery. Seismic reflective response is an important tool to detect sub-surface structure. Seismic reflection response is not enough to highlight geological boundaries and fluids in the pore space therefore, the use of integrated approach is vital to map sub-surface heterogeneities with high level of confidence. Based on seismic character and continuity of prominent reflectors four seismic horizons are marked on the seismic sections. All the strata is highly disturbed and distorted with presence of a network of fault bounded horst and graben structures, which indicate that the area was under compressional tectonic regime. These fault bounded geological structure formed structural traps favorable for the accumulation of hydrocarbon. The petrophysical analysis reveals that the Cretaceous sand formation has four types of sand: Sand A, B, C and D with good porosity (15 % average) and low volume of shale. Although complete petroleum system is present with structural traps and reservoir character of sand interval is very good but these sands are highly saturated with water thus are water flooded, which is the main reason of the abundant wells in the study area.  相似文献   
86.
Seismic hazard analysis of the northwest Himalayan belt was carried out by using extreme value theory (EVT). The rate of seismicity (a value) and recurrence intervals with the given earthquake magnitude (b value) was calculated from the observed data using Gutenberg–Richter Law. The statistical evaluation of 12,125 events from 1902 to 2017 shows the increasing trend in their inter-arrival times. The frequency–magnitude relation exhibits a linear downslope trend with negative slope of 0.8277 and positive intercept of 4.6977. The empirical results showed that the annual risk probability of high magnitude earthquake M?≥?7.7 in 50 years is 88% with recurrence period of 47 years, probability of M?≤?7.5 in 50 years is 97% with recurrence period of 27 years, and probability of M?≤?6.5 in 50 years is 100% with recurrence period of 4 years. Kashmir valley, located in the NW Himalaya, encompasses a peculiar tectonic and structural setup. The patterns of the present and historical seismicity records of the valley suggest a long-term strain accumulation along NNW and SSE extensions with the decline in the seismic gap, posing a potential threat of earthquakes in the future. The Kashmir valley is characterized by the typical lithological, tectono-geomorphic, geotechnical, hydrogeological and socioeconomic settings that augment the earthquake vulnerability associated with the seismicity of the region. The cumulative impact of the various influencing parameters therefore exacerbates the seismic hazard risk of the valley to future earthquake events.  相似文献   
87.
The Pirkoh and Drazinda formations in the Sulaiman Range, central Pakistan, yielded assemblages of (early) Bartonian orthophragminids, characterized predominantly by discocyclinids with a significant number of species probably endemic to Indian Subcontinent. The rarity of Asterocyclina and the absence of Orbitoclypeus and Nemkovella are noteworthy. Ten species of Discocyclina Gümbel and two species of Asterocyclina Gümbel, referable to the Shallow Benthics Zone (SBZ) 17 are described for the first time from Pakistan. The discocyclinids, i.e. Discocyclina praeomphalus, D. sulaimanensis, D. kutchensis, along with the new taxa established here, D. zindapirensis sp. nov., D. rakhinalaensis sp. nov., and D. pseudodispansa sp. nov., seem to be confined to the Indo-Pakistani region (Eastern Tethys). The Discocyclina dispansa, D. discus, D. nandori, and D. augustae lineages known from Western Tethys are also common in the Indian Subcontinent, as are asterocyclinids, such as Asterocyclina sireli and A. stellata. The upper part of the Drazinda Formation (‘Pellatispira beds’), referable to latest Bartonian and/or the early Priabonian, is poor in orthophragminids and is characterized by the occurrence of reticulate Nummulites, Heterostegina, Pellatispira and Silvestriella. The records of ‘Lepidocyclina of Caribbean affinity’ with large embryons from the Eocene of the Indian Subcontinent correspond to misidentified Discocyclina discus.  相似文献   
88.
Organic geochemical and palynofacies analyses were carried out on shale intervals of the Late Paleocene Patala Formation at Nammal Gorge Section, western Salt Range, Pakistan. The total organic carbon content and Rock-Eval pyrolysis results indicated that the formation is dominated by type II and type III kerogens. Rock-Eval \({T}_{\mathrm{max}}\) vs. hydrogen index (HI) and thermal alteration index indicated that the analysed shale intervals present in the formation are thermally mature. \(S_{1}\) and \(S_{2}\) yields showed poor source rock potential for the formation. Three palynofacies assemblages including palynofacies-1, palynofacies-2 and palynofacies-3 were identified, which are prone to dry gas, wet gas and oil generation, respectively. The palynofacies assessment revealed the presence of oil/gas and gas prone type II and type III kerogens in the formation and their deposition on proximal shelf with suboxic to anoxic conditions. The kerogen macerals are dominated by vitrinite and amorphinite with minor inertinite and liptinite. The kerogen macerals are of both marine and terrestrial origin, deposited on a shallow shelf. Overall, the dark black carbonaceous shales present within the formation act as a source rock for hydrocarbons with poor-to-moderate source rock quality, while the grey shales act as a poor source rock for hydrocarbon generation.  相似文献   
89.
Geospatial techniques play a crucial role in geomorphic studies, particularly in the challenging terrains like mountainous regions, inaccessible areas and densely vegetated landscapes, where geomorphic features cannot be recorded easily. Tectono-geomorphologic observations provide important clues regarding the landscape evolution, morpho-dynamics and ongoing tectonism of the region. The present study has been carried out in the Zanskar Basin (ZB), located to the south of the Indus Tsangpo Suture Zone (ITSZ), in the hinterland of the NW Himalaya. This study has been carried out to assess and evaluate active tectonics by employing tectono-geomorphic analysis, dynamics in drainage networks, geomorphological field observations and the Geographic Information System (GIS) environment. High-resolution satellite images, topographic maps and the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) were used to generate primary data sets, which were corroborated with field investigations for valid inferences. The geometry of the ZB suggests that continuous tectonic activity exerts first-order control on the overall shape, size and structure of the ZB. This first-order response is clearly reflected in the landforms modified by tectonic processes, namely, linear mountain fronts, elongated shape and tilting of the basin, braided and meandering river courses and lower stream length gradient index values in hard rock terrain. The ZB exhibits several eye-catching geomorphic features, such as well-defined triangular facets with wide base lengths and wine-glass valleys with small outlets along the footwall block of the Zanskar Shear Zone/South Tibetan Detachment System (ZSZ/STDS), as well as the presence of wind gaps, water gaps, bedrock incision, incised and entrenched valleys, narrow gorges and a high incision rate inferring active tectonics and recent uplift in the region. In addition, the existence of uplifted river terraces, as well as the stepped morphology of fans and strath terraces, suggests that the region is experiencing recent activity and ongoing tectonic uplift. These modified geomorphic characteristics suggest that the hinterland, which is part of the NW Himalaya, is tectonically quite active and has experienced a differential rate of tectonics during its evolution. The quantified geomorphic indices and their relations with the tectonics, climate and erosion activity infer that the basin geometry is mostly controlled by the ZSZ/STDS that dips 20°–70° NE, the south-dipping Zanskar Counter Thrust (ZCT) and other local tectonic elements like the Choksti Thrust (CT), Stondgey Thrust, Zangla Thrust and tectonic structures. The synergised results of quantified geomorphic indices and tectono-geomorphic evidence in the ZB strongly indicate that both the past and ongoing tectonism have significantly shaped and modified geomorphology of the ZB.  相似文献   
90.
In this study, Land Surface Temperature(LST) and its lapse rate over the mountainous Kashmir Himalaya was estimated using MODIS data and correlated with the observed in-situ air temperature(Tair) data. Comparison between the MODIS LST and Tair showed a close agreement with the maximum error of the estimate ±1°C and the correlation coefficient 0.90. Analysis of the LST data from 2002-2012 showed an increasing trend at all the selected locations except at a site located in the southeastern part of Kashmir valley. Using the GTOPO30 DEM, MODIS LST data was used to estimate the actual temperature lapse rate(ATLR) along various transects across Kashmir Himalaya, which showed significant variations in space and time ranging from 0.3°C to 1.2°C per 100 m altitude change. This observation is at variance with the standard temperature lapse rate(STLR) of 0.65°C used universally in most of the hydrological and other land surface models. Snowmelt Runoff Model(SRM) was used to determine the efficacy of using the ATLR for simulating the stream flows in one of the glaciated and snow-covered watersheds in Kashmir. The use of ATLR in the SRM model improved the R2 between the observed and predicted streamflows from 0.92 to 0.97.It is hoped that the operational use of satellite-derived LST and ATLR shall improve the understanding and quantification of various processes related to climate, hydrology and ecosystem in the mountainous and data-scarce Himalaya where the use of temperature and ATLR are critical parameters for understanding various land surface and climate processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号