首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1981篇
  免费   70篇
  国内免费   15篇
测绘学   39篇
大气科学   152篇
地球物理   413篇
地质学   761篇
海洋学   136篇
天文学   352篇
综合类   7篇
自然地理   206篇
  2023年   9篇
  2021年   24篇
  2020年   28篇
  2019年   22篇
  2018年   43篇
  2017年   28篇
  2016年   51篇
  2015年   45篇
  2014年   48篇
  2013年   118篇
  2012年   55篇
  2011年   103篇
  2010年   84篇
  2009年   103篇
  2008年   98篇
  2007年   76篇
  2006年   89篇
  2005年   79篇
  2004年   80篇
  2003年   79篇
  2002年   79篇
  2001年   52篇
  2000年   42篇
  1999年   52篇
  1998年   53篇
  1997年   30篇
  1996年   26篇
  1995年   25篇
  1994年   30篇
  1993年   30篇
  1992年   26篇
  1991年   20篇
  1990年   24篇
  1989年   30篇
  1988年   15篇
  1987年   12篇
  1986年   17篇
  1985年   22篇
  1984年   27篇
  1983年   21篇
  1982年   19篇
  1981年   25篇
  1980年   23篇
  1979年   16篇
  1977年   10篇
  1976年   11篇
  1975年   8篇
  1974年   12篇
  1973年   6篇
  1970年   7篇
排序方式: 共有2066条查询结果,搜索用时 31 毫秒
931.
The structure of the glacial ocean was significantly different to that of the present day with intermediate to mid-depth waters being notably more δ13C enriched than deep waters. This contrast was especially pronounced in the South Atlantic suggesting the development of a sharp chemical divide, or ‘chemocline’, at around 2500 m water depth between upper and lower layers, with implications for deep-ocean carbon storage [Hodell et al., 2003. Pleistocene vertical carbon isotope and carbonate gradients in the South Atlantic sector of the Southern Ocean. Geochemistry, Geophysics, Geosystems, 4(1): doi: 1004 10.1029/2002GC000367.]. We evaluate existing benthic foraminiferal δ13C, Cd/Ca and derived carbon isotope air–sea exchange signature (δ13Cas) data sets for the Atlantic during the Last Glacial Maximum (LGM), and Marine Isotope Stages (MIS) 6 and 8 in order to examine the regional extent of the chemocline in the South Atlantic. Benthic δ13C data north of the approximate latitude of the LGM Subantarctic Front (LGM-SAF, 43°S) linearly decrease with water depth, indicative of mixing between upper ‘well’ and lower ‘poorly’ ventilated water masses, with little evidence of the sharp chemical divide. Conversely, benthic δ13C data south of the LGM-SAF below 2500 m water depth are uniformly around ?0.8‰. The apparent δ13C gradient across the LGM-SAF suggests enhanced mid-depth ventilation north of the SAF and reduced ventilation to the south. From this pattern we conclude that the regional chemocline in the South Atlantic constituted a dominantly meridional, rather than a vertical gradient, and was developed during at least the past three glacial periods. Benthic Cd/Ca data indicate that the gradient was not nutrient related, although further data from the South Atlantic are needed for a better assessment of this suggestion. The combined benthic δ13C and Cd/Ca data indicate the source of well-ventilated upper waters in the South Atlantic changed from Northern Component Water (NCW) during early glacial phases to Upper Southern Component Water (USCW) during mid-to-late glacial phases when the Southern Ocean may have become isolated. USCW maintained a positive δ13C and δ13Cas signature simulating a North Atlantic origin that has been implicated in previous studies. The data demonstrate that secular imprints on δ13C must be taken into consideration when assessing the implications of the vertical δ13C gradient. This data also supports a variable water column architecture and modes of water mass formation as primary means to draw down atmospheric CO2 and storage in the abyssal ocean by involving processes occurring on either side of the SAF in the glacial Southern Ocean.  相似文献   
932.
Forty-eight new and previously published radiocarbon ages constrain deglacial and postglacial sea levels on southern Vancouver Island, British Columbia. Sea level fell rapidly from its high stand of about +75 m elevation just before 14 000 cal BP (12 000 radiocarbon yrs BP) to below the present shoreline by 13 200 cal BP (11 400 radiocarbon years BP). The sea fell below its present level 1000 years later in the central Strait of Georgia and 2000 years later in the northern Strait of Georgia, reflecting regional differences in ice sheet retreat and downwasting. Direct observations only constrain the low stand to be below ?11 m and above ?40 m. Analysis of the crustal isostatic depression with equations utilizing exponential decay functions appropriate to the Cascadia subduction zone, however, places the low stand at ?30 ± 5 m at about 11 200 cal BP (9800 BP). The inferred low stand for southern Vancouver Island, when compared to the sea-level curve previously derived for the central Strait of Georgia to the northwest, generates differential isostatic depression that is consistent with the expected crustal response between the two regions. Morphologic and sub-bottom features previously interpreted to indicate a low stand of ?50 to ?65 m are re-evaluated and found to be consistent with a low stand of ?30 ± 5 m. Submarine banks in eastern Juan de Fuca Strait were emergent at the time of the low stand, but marine passages persisted between southern Vancouver Island and the mainland. The crustal uplift presently occurring in response to the Late Pleistocene collapse of the southwestern sector of the Cordilleran Ice Sheet amounts to about 0.1 mm/yr. The small glacial isostatic adjustment rate is a consequence of low-viscosity mantle in this tectonically active region.  相似文献   
933.
Surging outlet glaciers are important in draining large ice caps, but the mechanisms controlling surge periodicities are poorly known. We investigated a sediment sequence from the glacier‐fed Lake Lögurinn in eastern Iceland, and our unique annually resolved data, based on sedimentary varves, imply that Eyjabakkajökull, an outlet glacier of Vatnajökull, began surging about 2200 cal a BP (before 1950 AD). Approximately 1700 cal a BP, the glacier started to surge at a uniform 34‐ to 38‐year periodicity that prevailed until the coldest part of the Little Ice Age when the periodicity almost halved to 21–23 years. Since the late 1800 s the surge periodicity of Eyjabakkajökull has returned to a longer period of 35–40 years. We suggest that surge periodicities of Eyjabakkajökull are forced by climatically driven mass balance changes, which may be a common forcing factor for similar surge‐type outlet glaciers. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
934.
During the Ediacaran, southern Brazil was the site of multiple episodes of volcanism and sedimentation, which are best preserved in the 3000 km2 Camaquã Basin. The interlayered sedimentary and volcanic rocks record tectonic events and paleoenvironmental changes in a more than 10 km-thick succession. In this contribution, we report new U–Pb and Sm–Nd geochronological constraints for the 605 to 580 Ma Bom Jardim Group, the 570 Ma Acampamento Velho Formation, and a newly-recognized 544 Ma volcanism. Depositional patterns of these units reveal the transition from a restricted, fault-bounded basin into a wide, shallow basin. The expansion of the basin and diminished subsidence rates are demonstrated by increasing areal distribution and compressed isopachs and increasing onlap of sediments onto the basement to the west. The Sm–Nd isotopic composition of the volcanic rocks indicates mixed sources, including crustal rocks from the adjacent basement. Both Neoproterozoic and Paleoproterozoic sources are indicated for the western part of the basin, whereas only the older Paleoproterozoic signature can be discerned in the eastern part of the basin.  相似文献   
935.
Environmental isotopes (particularly δ18O, δ2H, and δ13C values, 87Sr/86Sr ratios, and a14C) constrain geochemical processes, recharge distribution and rates, and inter-aquifer mixing in the Riverine Province of the southern Murray Basin. Due to methanogenesis and the variable δ13C values of matrix calcite, δ13C values are highly variable and it is difficult to correct 14C ages using δ13C values alone. In catchments where δ13C values, 87Sr/86Sr ratios, and major ion geochemistry yield similar a14C corrections, ∼15% of the C is derived from the aquifer matrix in the silicate-dominated aquifers, and this value may be used to correct ages in other catchments. Most groundwater has a14C above background (∼2 pMC) implying that residence times are <30 ka. Catchments containing saline groundwater generally record older 14C ages compared to catchments that contain lower salinity groundwater, which is consistent with evapotranspiration being the major hydrogeochemical process. However, some low salinity groundwater in the west of the Riverine Province has residence times of >30 ka probably resulting from episodic recharge during infrequent high rainfall episodes. Mixing between shallower and deeper groundwater results in 14C ages being poorly correlated with distance from the basin margins in many catchments; however, groundwater flow in palaeovalleys where the deeper Calivil–Renmark Formation is coarser grained and has high hydraulic conductivities is considerably more simple with little inter-aquifer mixing. Despite the range of ages, δ18O and δ2H values of groundwater in the Riverine Province do not preserve a record of changing climate; this is probably due to the absence of extreme climatic variations, such as glaciations, and the fact that the area is not significantly impacted by monsoonal systems.  相似文献   
936.
New conventional and sensitive high-resolution ion microprobe zircon U-Pb dating has led to a new understanding of the subdivision and evolution of the Amazon Craton during Precambrian time, with major improvements and changes made to the previous Rb-Sr based model. The interpretation of U-Pb and Sm-Nd isotopic data identifies eight main Precambrian tectonic provinces in the Craton, with ages ranging from 3.1 to 0.99 Ga. Some of the provinces were generated by accretional, arc-related processes (Carajás, Transamazonic, Tapajós-Parima and Rondônia-Juruena) and others by recycling of continental crust (Central Amazon, Rio Negro and Sunsas). The exposed Archean crust is restricted to the east (Carajás and south Amapá in Brazil) and north (Imataca in Venezuela) of the craton, indicating that the Amazon Craton is largely a Proterozoic crust. The Carajás-Imataca (3.10–2.53 Ga) and Transamazonian (2.25–2.00 Ga) Provinces are composed predominantly of granite-greenstone terranes. The Tapajós-Parima (2.10–1.87 Ga) and Rondônia-Juruena (1.75–1.47 Ga) Provinces represent new crust added as orogenic belts, while the Rio Negro (1.86–1.52 Ga) and Sunsas (1.33–0.99 Ga) Provinces originated mainly by magmatic-tectonic recycling of the above two orogenic belts. The only zone with a prominent northeast trend is the poorly known K'Mudku Shear Belt, characterized by a 1.20 Ga shear zone which deforms the rocks of at least three different provinces (Rio Negro, Tapajós-Parima and Transamazonic). The Central Amazon Province comprises mostly Orosirian volcano-plutonic rocks (Uatumã Magmatism) and is a terrane in which the exposed crustal structure and deformation are pluton-related. The Sm-Nd TDM model ages and Nd suggest that the Central Amazon Province was generated by the partial melting of Archean continental crust (Carajás Province?), perhaps related to underplating that began at the end of the Tapajós-Parima Orogeny (1.88–1.86 Ga).  相似文献   
937.
Spectral properties, magnetic fields, and dust transport at lunar swirls   总被引:1,自引:0,他引:1  
Lunar swirls are albedo anomalies associated with strong crustal magnetic fields. Swirls exhibit distinctive spectral properties at both highland and mare locations that are plausibly explained by fine-grained dust sorting. The sorting may result from two processes that are fairly well established on the Moon, but have not been previously considered together. The first process is the vertical electrostatic lofting of charged fine dust. The second process is the development of electrostatic potentials at magnetic anomalies as solar wind protons penetrate more deeply into the magnetic field than electrons. The electrostatic potential can attract or repel charged fine-grained dust that has been lofted. Since the finest fraction of the lunar soil is bright and contributes significantly to the spectral properties of the lunar regolith, the horizontal accumulation or removal of fine dust can change a surface’s spectral properties. This mechanism can explain some of the spectral properties of swirls, accommodates their association with magnetic fields, and permits aspects of weathering by micrometeoroids and the solar wind.  相似文献   
938.
Space weathering is now commonly accepted to modify the optical and magnetic properties of airless body regoliths throughout the Solar System. Although the precise formation processes are not well understood, the presence of ubiquitous sub-microscopic metallic iron (SMFe) grains in lunar soils and corresponding spectral analyses have explained both the unique optical and magnetic properties of such soils. More recently, a variety of ion irradiation, laser melting and vaporisation and impact experiments have been shown to reproduce these effects in the laboratory. Such experiments are crucial to the study of the formation of SMFe under controlled conditions. To date, more emphasis has been placed on optical analyses of laboratory samples, as these address directly the mineralogical interpretation of remote sensing data. However, the magnetic analyses performed on the Apollo and Luna samples have provided useful qualitative and quantitative evaluation of regolith metallic iron content. These techniques are reviewed here, demonstrated on pulsed laser irradiated olivine powder, and their utility for determining the quantity and size distribution of this metallic iron discussed. Ferromagnetic resonance, multi-frequency magnetic susceptibility, vibrating sample magnetometry and thermomagnetic measurements were carried out. Each showed trends expected for the conversion of paramagnetic Fe2+ in olivine to fine-grained Fe0, with some grains in the superparamagnetic size range. Although evidence for superparamagnetic iron was found, the quantity of sub-microscopic metallic iron produced in these experiments proved insufficient to make conclusive measurements of either the quantity or size distribution of this iron. Improvements to both the experimental and analytical procedures are discussed to better enable such measurements in the future.  相似文献   
939.
Abstract– Lunar meteorite Northeast Africa (NEA) 001 is a feldspathic regolith breccia. This study presents the results of electron microprobe and LA‐ICP‐MS analyses of a section of NEA 001. We identify a range of lunar lithologies including feldspathic impact melt, ferroan noritic anorthosite and magnesian feldspathic clasts, and several very‐low titanium (VLT) basalt clasts. The largest of these basalt clasts has a rare earth element (REE) pattern with light‐REE (LREE) depletion and a positive Euanomaly. This clast also exhibits low incompatible trace element (ITE) concentrations (e.g., <0.1 ppm Th, <0.5 ppm Sm), indicating that it has originated from a parent melt that did not assimilate KREEP material. Positive Eu‐anomalies and such low‐ITE concentrations are uncharacteristic of most basalts returned by the Apollo and Luna missions, and basaltic lunar meteorite samples. We suggest that these features are consistent with the VLT clasts crystallizing from a parent melt which was derived from early mantle cumulates that formed prior to the separation of plagioclase in the lunar magma ocean, as has previously been proposed for some other lunar VLT basalts. Feldspathic impact melts within the sample are found to be more mafic than estimations for the composition of the upper feldspathic lunar crust, suggesting that they may have melted and incorporated material from the lower lunar crust (possibly in large basin‐forming events). The generally feldspathic nature of the impact melt clasts, lack of a KREEP component, and the compositions of the basaltic clasts, leads us to suggest that the meteorite has been sourced from the Outer‐Feldspathic Highlands Terrane (FHT‐O), probably on the lunar farside and within about 1000 km of sources of both Low‐Ti and VLT basalts, the latter possibly existing as cryptomaria deposits.  相似文献   
940.
The shoshonitic intrusions of eastern Tibet, which range in age from 33 to 41 Ma and in composition from ultramafic (SiO2 = 42 %) to felsic (SiO2 = 74 %), were produced during the collision of India with Eurasia. The mafic and ultramafic members of the suite are characterized by phenocrysts of phlogopite, olivine and clinopyroxene, low SiO2, high MgO and Mg/Fe ratios, and olivine forsterite contents of Fo87 to Fo93, indicative of equilibrium with mantle olivine and orthopyroxene. Direct melting of the mantle, on the other hand, could not have produced the felsic members. They have a phenocryst assemblage of plagioclase, amphibole and quartz, high SiO2 and low MgO, with Mg/Fe ratios well below the values expected for a melt in equilibrium with the mantle. Furthermore, the lack of decrease in Cr with increasing SiO2 and decreasing MgO from ultramafic to felsic rocks precludes the possibility that the felsic members were derived by fractional crystallization from the mafic members. Similarly, magma mixing, crustal contamination and crystal accumulation can be excluded as important processes. Yet all members of the suite share similar incompatible element and radiogenic isotope ratios, which suggests a common origin and source. We propose that melting for all members of the shoshonite suite was initiated in continental crust that was thrust into the upper mantle at various points along the transpressional Red River-Ailao Shan-Batang-Lijiang fault system. The melt formed by high-degree, fluid-absent melting reactions at high-T and high-P and at the expense of biotite and phengite. The melts acquired their high concentrations of incompatible elements as a consequence of the complete dissolution of pre-existing accessory minerals. The melts produced were quartz-saturated and reacted with the overlying mantle to produce garnet and pyroxene during their ascent. The felsic magmas reacted little with the adjacent mantle and preserved the essential features of their original chemistry, including their high SiO2, low Ni, Cr and MgO contents, and low Mg/Fe ratio, whereas the mafic and ultramafic magmas are the result of extensive reaction with the mantle. Although the mafic magmas preserved the incompatible element and radiogenic isotope ratios of their crustal source, buffering by olivine and orthopyroxene extensively modified their MgO, Ni, Cr, SiO2 contents and Mg/Fe ratio to values dictated by equilibrium with the mantle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号