首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   6篇
  国内免费   1篇
测绘学   2篇
大气科学   9篇
地球物理   24篇
地质学   51篇
海洋学   18篇
天文学   18篇
自然地理   10篇
  2023年   1篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   5篇
  2017年   5篇
  2016年   6篇
  2015年   7篇
  2014年   5篇
  2013年   10篇
  2012年   6篇
  2011年   10篇
  2010年   5篇
  2009年   7篇
  2008年   2篇
  2007年   10篇
  2006年   6篇
  2005年   5篇
  2004年   6篇
  2003年   3篇
  2002年   6篇
  2001年   5篇
  2000年   1篇
  1998年   1篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1993年   4篇
  1991年   1篇
  1990年   1篇
  1985年   2篇
  1980年   1篇
排序方式: 共有132条查询结果,搜索用时 15 毫秒
91.
Raman spectroscopy of a range of irradiated and nonirradiated natural terrestrial bitumens has revealed that radiolytic alteration is generally associated with an increase in structural disorganisation. An interpretational methodology designed to overcome the considerable difficulties in obtaining reproducible, meaningful parameters of structural disorganisation is also presented, and should prove useful for future Raman applications. Raman investigation of a set of bitumens reported to have formed by the radiolytic polymerisation of light hydrocarbons, such as methane, has revealed excessive structural disorganisation, relative to biogenic complex-hydrocarbon-derived bitumens of similar radioelement concentrations, which may indicate the importance of precursor materials on the organic products of irradiation. Variations in the R1 ratio (D1/G band intensity) are found to be the best guide to variations in structural organisation. Comparisons of Raman spectra of the same sample, but produced by different exciting wavelengths, reveal the importance of the selection of a suitable laser wavelength. The results are discussed in terms of analyses of irradiated organic matter in the solar system, especially cometary nuclei and carbonaceous chondrites.  相似文献   
92.
Impact melt rocks formed during hypervelocity impact events are ideal for studying impact structures. Here, we describe impact melt rock samples collected proximal to the 31 km wide 58 Ma Hiawatha impact structure, northwest Greenland, which is completely covered by the Greenland Ice Sheet. The melt rocks contain diagnostic shock indicators (e.g., planar deformation features [PDF] in quartz and shocked zircon) and form three groups based on melt textures and chemistry: (i) hypocrystalline, (ii) glassy, and (iii) carbonate-based melt rocks. The exposed foreland directly in front of the structure consists of metasedimentary successions and igneous plutons; however, the carbonate-based impactites indicate a mixed target sequence with a significant carbonate-rich component. Well-preserved organic material in some melt rocks indicates that North Greenland at the time of impact was host to abundant organic material, likely a dense high-latitude temperate forest. Geochemical signatures of platinum-group elements in selected samples indicate an extraterrestrial component and support previous identification of a highly fractionated iron impactor in glaciofluvial sand. Our results illustrate the possibility to study impact structures hidden beneath a thick ice sheet based on transported samples and this opens a new avenue for identifying other potential impact craters in Greenland and Antarctica.  相似文献   
93.
At Miéville, in the Aiguilles-Rouges Massif, granitic rocks of the basement are deformed into mylonites within a major subvertical shear zone. The ambient temperature during translation is estimated at 250° C±30° C from fluid inclusion filling temperatures in syntectonic microveins, from 18O quartzilmenite of+15%, and from mineralogical criteria. Porphyroclasts of both oligoclase and orthoclase feldspar decrease from initial diameters of 20 mm and assume elliptical shapes during progressive deformation, due to recrystallisation of the margins to ultra-fine polygonal grains which extend out from the porphyroclasts in thin trails: the final stable grain size is <5 . The recrystallised feldspar has a composition of the parent porphyroclast,+albite, requiring relative gains of Na and losses of K+Ca compared to the precursor, and implying short range redistribution of the components during deformation. Decrease of free energy associated with the deformation catalysed change in feldspar composition, coupled with stored strain energy in the porphyroclasts may account for recrystallisation to a stable aggregate of ultrafine grain size. The long trails imply exceptionally high ductility, which, coupled with microstructural criteria, and admixture of quartz from neighbouring pure quartz aggregates by grain boundary sliding, is interpreted in terms of superplastic flow. Estimated temperatures of T/T m0.2 for the inferred superplastic deformation is lower by a factor of 2 than previously recorded for this flow michanism in silicates. The feldspar and quartz probably accomodated grain boundary sliding by intercrystalline diffusion.Biotite responds to deformation by bendgliding, kinking, and recrystallisation in mantles. The reaction of high-Ti parent grains to low-Ti biotite+Fe-muscovite+ ilmenite+chlorite is catalysed at all of these microstructural sites. Progressive deformation of the fine-grained products in the mantles is coupled with steady reaction to low-Fe muscovite+epidote+ sphene+rutile resulting in exceptionally ductile trails, as for the case of feldspar.Biotite grains have pervasive networks of nondisplacive intragranular fractures. At the fracture tips increase of the stress intensity has catalysed the reaction of high-Ti parent grains to low-Ti biotite+muscovite+ ilmenite which occupy the fractures. The fractures propagate and coalesce resulting in mechanical breakdown of the parent grains: these microstructures are believed to be examples of natural stress corrosion cracking. These features are also abundant in feldspar porphyroclasts where at fracture tips orthoclasesecondary orthoclase+albite, and oligoclasesecondary oligoclase+albite. Stress corrosion cracking may be significant in the steady state deformation of crustal rocks at low temperatures when intracrystalline plasticity is not generally dominant.Two way mass balance calculations utilising major and selected trace element data, reveal that deformation of the granite was essentially isochemical, involving average additions of <1 % H2O+CO2, at approximately constant specific gravity. The parameters Fe2+/Fe and 18Owhole rock maintain relatively constant values across the shear zone, and this also implies limited participation of fluids in the deformation. Alkali elements and titanium display the largest percentage variation during progressive deformation, whereas SiO2, Al2O3, and P2O5, together with V, Ni, Cr,Y,Zr, and Nb remain relatively constant. All variations decrease at increasing states of deformation and this is interpreted in terms of mechanical mixing of chemical inhomogeneities of the granite precursor within the shear zone. Constraints imposed by variations in abundance of the relatively immobile elements imply that volume changes accompanying deformation in the shear zone were less than ±10%.  相似文献   
94.
We show crucial evidence for the Cretaceous–Palaeogene (K–Pg) boundary event recorded within a rare succession deposited in an inner‐platform lagoon on top of a Mesozoic, tropical, intra‐oceanic (western Tethys) Adriatic carbonate platform, which is exposed at Likva cove on the island of Bra? (Croatia). The last terminal Maastrichtian fossils appear within a distinct 10–12 cm thick event bed that is characterised by soft‐sediment bioturbation and rare shocked‐quartz grains, and is interpreted as a distal tsunamite. Directly overlying this is a 2 cm thick reddish‐brown clayey mudstone containing planktonic foraminifera typical of the basal Danian, and with elevated platinum‐group elements in chondritic proportions indicating a clear link to the Chicxulub asteroid impact. These results strongly support the first discovery of a “potential” K–Pg boundary tsunamite on the neighbouring island of Hvar, and these two complementary sections represent probably the most complete record of the event among known distal shallow‐marine successions.  相似文献   
95.
Modelling adsorptive solute transport in soils needs a number of parameters to describe its reaction kinetics and the values of these parameters are usually determined from batch and displacement experiments. Some experimental results reveal that when describing the adsorption as first-order kinetics, its associated reaction rates are not constants but vary with pore water velocity. Explanation of this varies but an independent verification of each explanation is difficult because simultaneously measuring the spatiotemporal distributions of dissolved and adsorbed solutes in soils is formidable. Pore-scale modelling could play an important role to address this gap and has received increased attention over the past few years. This paper investigated the transport of adsorptive solute in a simple porous medium using pore-scale modelling. Fluid flow through the void space of the medium was assumed to be laminar and in saturated condition, and solute transport consisted of advection and molecular diffusion; the sorption and desorption occurring at the fluid–solid interface were modelled as linear first-order kinetics. Based on the simulated spatiotemporal distribution of dissolved and adsorbed solutes at pore scale, volumetric-average reaction kinetics at macroscopic scale and its associated reactive parameters were measured. Both homogeneous adsorption where the reaction rates at microscopic scale are constant, and heterogeneous adsorption where the reaction rates vary from site to site, were investigated. The results indicate that, in contrast to previously thought, the macroscopic reaction rates directly measured from the pore-scale simulations do not change with pore velocity under both homogeneous and heterogeneous adsorptions. In particular, we found that for the homogeneous adsorption, the macroscopic adsorption remains first-order kinetic and can be described by constant reaction rates, regardless of flow rate; whilst for the heterogeneous adsorption, the macroscopic adsorption kinetics continues not to be affected by flow rate but is no longer first-order kinetics that can be described by constant reaction rates. We discuss how these findings could help explain some contrary literature reports over the dependence of reaction rates on pore water velocity.  相似文献   
96.
Larval Euphausia similis were collected off temperate eastern Australia in spring 2004 and 2006 to evaluate the relationships between larval populations, mesoscale oceanographic variability, and the wider planktonic community. Larval E. similis were present in greater numbers in the East Australian Current (EAC) relative to productive coastal waters. Larval E. similis density was homogenous across the EAC—Tasman Sea frontal region, but larvae were smaller in the Tasman Sea. Larval E. similis density was not enhanced within a cold core eddy relative to the surrounding EAC. We observed a negative correlation between larval E. similis density and larval fish density, and a weak positive correlation with fluorescence. Evaluation of a significant fish density×fluorescence interaction term showed that the effect of fish density was reduced at high fluorescence values. Analysis of normalized biomass size spectrum (NBSS) provided evidence for potential competitive exclusion of copepods by krill. Data presented in this study suggest a predatory influence on surface E. similis populations by mesopelagic larval fish. The degree of predation appears to be dependent on food availability, potentially mediated by changes in the physiological condition of krill.  相似文献   
97.
The Ferguson Lake Ni–Cu–Co–platinum-group element (PGE) deposit in Nunavut, Canada, occurs near the structural hanging wall of a metamorphosed gabbroic sill that is concordant with the enclosing country rock gneisses and amphibolites. Massive to semi-massive sulfide occurs toward the structural hanging wall of the metagabbro, and a low-sulfide, high-PGE style of mineralization (sulfide veins and disseminations) locally occurs ~30–50 m below the main massive sulfide. Water–rock interaction in the Ferguson Lake Ni–Cu–Co–PGE deposit is manifested mostly as widespread, post-metamorphic, epidote–chlorite–calcite veins, and replacement assemblages that contain variable amounts of sulfides and platinum-group minerals (PGM). PGM occur as inclusions in magmatic pyrrhotite and chalcopyrite in both the massive sulfide and high-PGE zones, at the contact between sulfides and hornblende or magnetite inclusions in the massive sulfide, in undeformed sulfide veins and adjacent chlorite and/or epidote halos, in hornblende adjacent to hydrothermal veins, and in plagioclase–chlorite aggregates replacing garnet cemented by sulfide. The PGM are mostly represented by the kotulskite (PdTe)–sobolevskite (PdBi) solid solution but also include michenerite (PdBiTe), froodite (PdBi2), merenskyite (PdTe2), mertieite II (Pd8[Sb,As]3), and sperrylite (PtAs2) and occur in variety of textural settings. Those that occur in massive and interstitial sulfides, interpreted to be of magmatic origin and formed through exsolution from base metal sulfides at temperatures <600°C, are dominantly Bi rich (i.e., Te-bearing sobolevskite), whereas those that occur in late-stage hydrothermal sulfide/silicate veins and their epidote–chlorite alteration halos tend to be more Te rich (i.e., Bi-bearing kotulskite). The chemistry and textural setting of the various PGM supports a genetic model that links the magmatic and hydrothermal end-members of the sulfide–PGM mineralization. The association of PGM with magmatic sulfides in the massive sulfide and high-PGE zones has been interpreted to indicate that PGE mineralization was initially formed through exsolution from base metal sulfides which formed by magmatic sulfide liquid segregation and crystallization. However, the occurrence of PGM in undeformed sulfide-bearing veins and in their chlorite–epidote halos and differences in PGM chemistry indicate that hydrothermal fluids were responsible for post-metamorphic redistribution and dispersion of PGE.  相似文献   
98.
99.
Point-source impacts such as sewage plumes can cause significant degradation of larval habitat. Data on larval abundance, current speed and the shape of surface and subsurface sewage plumes off the coast of Sydney, Australia, indicated that long-shore currents can transport large numbers of larvae through plumes that can potentially affect the health of larvae. Deformities to the notochord, eyes and head were found in samples of preserved wild larvae. Some deformities (e.g. Lateral curl of the notochord) were probably caused by preservation and ‘packing effects’ (shaped by organisms and objects in the sample), while others (e.g. half-pigmented eyes and corrugated notochord) were unlikely to have been caused by sampling artefacts. Deformed larvae were found in waters around Sydney that are influenced by multiple sewage outfalls, and at locations up to 250 km from Sydney. It was concluded that deformities were caused by natural and potentially anthropogenic factors. Cyto- and histopathological studies of larvae are required. Moreover, relationships between oceanography and concentrations of pollutants in plumes are needed to further assess impacts of pollutants on assemblages of vulnerable planktonic animals.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号