首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23221篇
  免费   195篇
  国内免费   132篇
测绘学   357篇
大气科学   1222篇
地球物理   4404篇
地质学   9090篇
海洋学   2265篇
天文学   5314篇
综合类   42篇
自然地理   854篇
  2022年   263篇
  2021年   432篇
  2020年   397篇
  2019年   463篇
  2018年   944篇
  2017年   869篇
  2016年   882篇
  2015年   371篇
  2014年   768篇
  2013年   1301篇
  2012年   898篇
  2011年   1103篇
  2010年   1061篇
  2009年   1230篇
  2008年   1050篇
  2007年   1229篇
  2006年   1080篇
  2005年   575篇
  2004年   538篇
  2003年   543篇
  2002年   566篇
  2001年   512篇
  2000年   420篇
  1999年   338篇
  1998年   331篇
  1997年   331篇
  1996年   256篇
  1995年   263篇
  1994年   238篇
  1993年   186篇
  1992年   214篇
  1991年   181篇
  1990年   197篇
  1989年   191篇
  1988年   161篇
  1987年   187篇
  1986年   175篇
  1985年   210篇
  1984年   204篇
  1983年   201篇
  1982年   191篇
  1981年   176篇
  1980年   164篇
  1979年   185篇
  1978年   168篇
  1977年   146篇
  1976年   134篇
  1975年   138篇
  1974年   127篇
  1973年   166篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
281.
Byurakan Astrophysical Observatory; SKB Granit; Geneva Observatory; Flight Control Center. Translated from Astrofizika, Vol. 32, No. 1, p. 5–13, January–February, 1990.  相似文献   
282.
We formulate the modulation of galactic anisotropy of cosmic rays caused by their orbital deflection in the heliomagnetosphere. According to the formulation, the average sidereal i-th harmonic daily variation (i = 1,2,…) produced from the anisotropy from an arbitrary direction can be expressed by a linear combination of three basic vectors for uni-directional anisotropy and five basic vectors for bi-directional anisotropy. These vectors are obtained by calculating trajectories of cosmic rays (20?104GV) in a model magnetosphere having Parker's Archimedian spiral structure with a flat or a wavy neutral sheet in either of two polarity states, one is called “Positive” state (away field in the northern space of the neutral sheet and toward field in the southern space) and the other is called “Negative” state (reversed state of the above). Among general characteristics of the sidereal daily variations, the most remarkable features are: (1) The observable variations in low rigidity (? 2000 GV) can be produced even from an uni-directional anisotropy in the direction of the Earth's rotation axis. These variations are strongly dependent on the polarity state, i.e., they are greater in the Positive state than in the Negative. (2) Those produced from the anisotropy in the Equatorial plane also show the polarity dependence but contrary to the previous case they are greater in the Negative state than in the Positive. Their magnitude in the former state is not so small even in the extremely low rigidity (~ 100 GV) as compared with that in high rigidity region. (3) These general characteristics are not altered by the introduction of the wavy neutral sheet or the magnetic irregularities, but the variations are affected more or less, depending on the heliolatitudinal extent of the wavy sheet or the degree of cosmic ray scattering with the irregularities, (4) Sidereal daily variation for the wavy sheet shows a toward-away field dependence similar to that of Swinson-type of solar origin, but the dependence is predominant in intermediate rigidity region (~ 500 GV), in marked contrast to that of solar origin. (5) Finally, whichever its direction may be, the uni-directional anisotropy produces the sidereal diurnal variation common to two conjugate stations in the Northern and Southern hemisphere. If there is any difference between the observed variations at the stations, it should be interpreted as being due to higher order anisotropy such as the bi-directional anisotropy.  相似文献   
283.
284.
Acceleration of cosmic rays interacting with the anisotropic magnetohydrodynamic turbulent medium is studied. Particle acceleration is caused by a large-scale electric field arising in a turbulent medium due to the α-effect. A comparison is made of equilibrium spectra of cosmic rays, characteristic of the specific acceleration mechanism, with the energy distribution of particles corresponding to the statistical Fermi acceleration.  相似文献   
285.
An intensive survey has been conducted of the distributions of some chemical properties (dissolved oxygen, nutrients and carbonate properties) in the Kuroshio/Oyashio Interfrontal Zone. Many low-salinity water patches were found down to depths of 640 m. Each chemical property also showed anomalies in these patches, but the degree of variation showed a low correlation with salinity. This may be due to the high variability of biological processes in the surface waters where these patches are formed. Vertical profiles of the chemical properties were also observed along the Kuroshio extension axis from 140.50°E to 146.75°E. The concentrations of nutrients and total carbonate (TC) in the water having densities greater than σθ=26.60 can be regarded as being formed by the isopycnal mixing of the Kuroshio component water and Oyashio component water and biological degradation within the density surfaces. This implies that the transport of chemical properties by the diapycnal mixing is negligible in these density layers in the K/O zone.  相似文献   
286.
287.
This work demonstrates the possibility of magnetic-field topology investigations using microwave polarimetric observations. We study a solar flare of GOES M1.7 class that occurred on 11 February, 2014. This flare revealed a clear signature of spatial inversion of the radio-emission polarization sign. We show that the observed polarization pattern can be explained by nonthermal gyrosynchrotron emission from the twisted magnetic structure. Using observations of the Reuven Ramaty High Energy Solar Spectroscopic Imager, Nobeyama Radio Observatory, Radio Solar Telescope Network, and Solar Dynamics Observatory, we have determined the parameters of nonthermal electrons and thermal plasma and identified the magnetic structure where the flare energy release occurred. To reconstruct the coronal magnetic field, we use nonlinear force-free field (NLFFF) and potential magnetic-field approaches. Radio emission of nonthermal electrons is simulated by the GX Simulator code using the extrapolated magnetic field and the parameters of nonthermal electrons and thermal plasma inferred from the observations; the model radio maps and spectra are compared with observations. We have found that the potential-magnetic-field approach fails to explain the observed circular polarization pattern; on the other hand, the Stokes-\(V\) map is successfully explained by assuming nonthermal electrons to be distributed along the twisted magnetic structure determined by the NLFFF extrapolation approach. Thus, we show that the radio-polarization maps can be used for diagnosing the topology of the flare magnetic structures where nonthermal electrons are injected.  相似文献   
288.
The processes of space debris formation are described; the urgency of the problem of its removal from near-Earth space is noted. A method to prevent the clogging of space by equipping a spacecraft to be launched into orbit with additional devices, simple in design and mode of operation, is presented. The results of the estimation of aerothermodynamics, bulk–mass characteristics and trajectories of low-orbit spacecraft equipped with a space debris disposal system are presented.  相似文献   
289.
The distribution of axial rotation velocities of near-Earth asteroids (NEAs) substantially differs from that of the Main-Belt asteroids by an excess of both quickly and slowly rotating objects. Among the possible causes of this difference is the influence of the solar radiation—the so-called YORP effect—that arises from the absorption of solar energy and its reemission in the thermal range by a rotating body of irregular shape. It is known that the magnitude of this effect depends on the asteroid size and the quantity of received solar energy (the insolation). Analysis of the observational data showed that the mean diameter of NEAs decreases from the middle of the distribution to the edges, i.e., the excess of both slowly (ω ≤ 2 rev/day) and quickly (ω = 8–11 rev/day) rotating objects is formed due to the asteroids with sizes smaller than those in the middle of the distribution, which agrees well with the influence of the YORP effect. Moreover, the dependence of the axial rotation velocity of NEAs on the relative insolation shows that, for the NEAs referred to, both excesses are found in orbits where, on average, they receive 8–10% more solar energy than the NEAs in the middle of the distribution. This result also agrees with the character of the influence of the YORP effect and can be considered as an additional argument in its support. Thus, the study showed that one can infer that the currently available observational data suggest the possible influence of the YORP effect on the axial rotation of the near-Earth asteroids having sizes of D ~ 2 km and less. This is the first attempt to find the influence of the YORP effect on the axial rotation of the NEA family as a whole.  相似文献   
290.
42 hours of A-array VLA data and 18 days MERLIN data at 1.4 GHz have been combined to image a 10 arcminute field centred on the Hubble Deep Field (HDF). This area encloses both the Hubble Deep and Flanking Fields. A complete sample of 87 sources have been detected with flux densities above 40 μJy. All these have been imaged with the MERLIN+VLA combination to produce images with 0.2, 0.3 and 0.5 arcsecond resolution. These are the most sensitive 1.4 GHz images yet made with rms noise levels of 3.3 μJy/beam in the 0.2 arcsecond images. About 70% of the microJy sources are found to be starburst type systems associated with major disk galaxies in the redshift range 0.4–1. Some 20% are found to be low-luminosity AGN systems identified with field ellipticals at redshifts close to 1. The remaining 10% are associated with optically faint systems close to or beyond the HDF limit; many of these may be dust-shrouded starbursts at high redshift. We propose to extend this study to include VLBI data of comparable sensitivity to investigate the compact radio structures found in the microJy source population.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号