首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51961篇
  免费   706篇
  国内免费   487篇
测绘学   1530篇
大气科学   3469篇
地球物理   10052篇
地质学   19259篇
海洋学   4448篇
天文学   12063篇
综合类   175篇
自然地理   2158篇
  2022年   398篇
  2021年   657篇
  2020年   622篇
  2019年   716篇
  2018年   1622篇
  2017年   1524篇
  2016年   1776篇
  2015年   900篇
  2014年   1631篇
  2013年   2813篇
  2012年   1829篇
  2011年   2234篇
  2010年   2017篇
  2009年   2441篇
  2008年   2118篇
  2007年   2245篇
  2006年   2103篇
  2005年   1450篇
  2004年   1316篇
  2003年   1322篇
  2002年   1321篇
  2001年   1214篇
  2000年   1100篇
  1999年   950篇
  1998年   893篇
  1997年   904篇
  1996年   796篇
  1995年   764篇
  1994年   708篇
  1993年   579篇
  1992年   565篇
  1991年   569篇
  1990年   575篇
  1989年   548篇
  1988年   498篇
  1987年   594篇
  1986年   510篇
  1985年   627篇
  1984年   654篇
  1983年   639篇
  1982年   614篇
  1981年   519篇
  1980年   507篇
  1979年   482篇
  1978年   454篇
  1977年   424篇
  1976年   375篇
  1975年   371篇
  1974年   395篇
  1973年   458篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
The thermal balance of the plasma in the night-time mid-latitude F2-region is examined using solutions of the steady-state O+ and electron heat balance equations. The required concentrations and field-aligned velocities are obtained from a simultaneous solution of the time-dependent O+ continuity and momentum equations.The results demonstrate the systematic trend for the O+ temperature to be 10–20 K greater than the electron temperature during the night at around 300 km, as observed at St. Santin by Bauer and Mazaudier. It is shown that frictional heating between the O+ and neutral gases is the cause of the O+ temperature being greater than the electron temperature; the greater the importance of frictional heating in the thermal balance the greater is the difference in the O+ and electron temperatures. A study is made of the roles played in the thermal balance of the plasma by the thermal conductivity of the O+ and electron gases; collisional heat transfer between O+ electrons and neutrals; frictional heating between the O+ and neutral gases; and advection and convection due to field-aligned O+ and electron motions. The results of the study show that, at around 300 km, electron cooling by excitation of the fine structure of the ground state of atomic oxygen plays a major role in the thermal balance of the electrons and, since the temperature of the ions is little affected by this electron cooling process, in determining the difference between the ion and electron temperatures.  相似文献   
992.
A unified ionospheric electron collision frequency model profile 〈νg〉 has been calculated in the height range 50–500 km. The computed profile accounts for the electron collisions with the neutral particles as well as the ions. Experimental values of momentum transfer cross-sections have been used for electron collisions with N2, O2 and Ar and theoretical values for N, O, He and H. It is observed that the electron-ion collisions 〈νei〉 dominate over the electron-neutral collisions 〈νen〉 above 170 km. However, 〈νe?N〉 is of the same order of magnitude as 〈νe?O〉 in the height range 170–210 km. Above 360 km 〈νe?O〉 becomes more important among the neutrals. The temporal, seasonal and solar epoch variations of 〈νei〉 are also shown. A typical electron collision frequency profile 〈νg〉 corresponding to the exospheric temperature of 1100 K has been compared with the available experimental results for D, E and F-regions obtained from different experimental techniques. This profile has been used to determine the electrical, thermal, heat flow and current flow conductivities, the mobility and the diffusivity of electrons. The results so obtained are found to be in good agreement with the earlier results.  相似文献   
993.
Dynamic behavior of the coupled ionosphere-protonosphere system in the magnetospheric convection electric field has been theoretically studied for two plasmasphere models. In the first model, it is assumed that the whole plasmasphere is in equilibrium with the underlying ionosphere in a diurnal average sense. The result for this model shows that the plasma flow between the ionosphere and the protonosphere is strongly affected by the convection electric field as a result of changes in the volume of magnetic flux tubes associated with the convective cross-L motion. Since the convection electric field is assumed to be directed from dawn to dusk, magnetic flux tubes expand on the dusk side and contract on the dawn side when rotating around the earth. The expansion of magnetic flux tubes on the dusk side causes the enhancement of the upward H+ flow, whereas the contraction on the dawn side causes the enhancement of the downward H+ flow. Consequently, the H+ density decreases on the dusk side and increases on the dawn side. It is also found that significant latitudinal variations in the ionospheric structures result from the L-dependency of these effects. In particular, the H+ density at 1000 km level becomes very low in the region of the plasmasphere bulge on the dusk side. In the second model, it is assumed that the outer portion of the plasmasphere is in the recovery state after depletions during geomagnetically disturbed periods. The result for this model shows that the upward H+ flux increases with latitude and consequently the H+ density decreases with latitude in the region of the outer plasmasphere. In summary, the present theoretical study provides a basis for comparison between the equatorial plasmapause and the trough features in the topside ionosphere.  相似文献   
994.
This paper reports the study concerning the latitudinal dispalacement of the auroral oval as a function of the northward orientation of the Bz-component IMF and the relation between southward Bz and the auroral dynamics in the night sector.  相似文献   
995.
It is proved that a periodic orbit of the three-dimensional circular restricted three-body problem can be continued analytically, when the mass of the third body is sufficiently small, to a periodic orbit of the three dimensional general three-body problem in a rotating frame. The above method is not applicable when the period of the periodic orbit of the restricted problem is equal to 2k (k any integer), in the usual normalized units. Several numerical examples are given.  相似文献   
996.
The method of obtaining the estimates of the maximalt-interval ( , +) on which the solution of theN-body problem exists and which is such that some fixed mutual distance (e. g. 12) exceeds some fixed non-negative lower bound, for allt contained in ( , +), is considered. For given masses and initial data, the increasing sequences of the numbers k , each of which provides the estimate + > k , are constructed. It appears that if + = +, then .  相似文献   
997.
In this note we derive an exact solution of transfer equation in a plane-parallel semiinfinite atmosphere with albedo >1, by the method of Laplace transform and Wiener-Hopf technique. The emergent intensityI(0, ) is obtained in terms of theH 0-functionH 0() (Das Gupta, 1978) for which some good approximations are given. Intensity at any depth is also obtained.I(0, )/I(0, 0) is plotted in graphs against [0,1], and shows a maximum which drops and shifts towards the origin as increases.  相似文献   
998.
The periodogram analysis of theV observations of the Scuti star HR 1225 has been carried out. Two frequencies of 6.415 cd (P 0=0 . d 1558) and 8.418 cd (P 1=0 . d 1188) have been determined. The period ratio ofP 1/P 0=0.762 indicates radial pulsation. The absolute magnitude, effective temperature and mass of the star are derived to be 1 . m 05, 7600 K and 1.9M , respectively.  相似文献   
999.
Oliver K. Manuel 《Icarus》1980,41(2):312-315
Isotopically anomalous xenon in chondrites is closely associated with low-Z noble gases, but there is no helium (or neon) in the noble gas component with normal xenon. The correlation of elemental and isotopic heterogeneities in meteoritic noble gases places stringent limits on the origin of isotopically anomalous elements in meteorites and on the formation of the solar system.  相似文献   
1000.
Lowell's value for the mass of Planet X was about seven times that of the Earth. Postdiscovery determinations of the mass of Pluto from analysis of the observed motions of Uranus and Neptune reduced this value to about one Earth mass. More extended analyses in the past 10 years have lowered this value to about one-tenth of an Earth mass. The mass so derived, however, fails to agree by a factor of 50 with that determined from the motion of the newly discovered satellite Charon. The discrepancy may arise from unmodeled effects in the motions of the outer planets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号