首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22953篇
  免费   189篇
  国内免费   130篇
测绘学   354篇
大气科学   1205篇
地球物理   4355篇
地质学   8987篇
海洋学   2232篇
天文学   5269篇
综合类   42篇
自然地理   828篇
  2022年   263篇
  2021年   431篇
  2020年   394篇
  2019年   461篇
  2018年   939篇
  2017年   864篇
  2016年   879篇
  2015年   365篇
  2014年   765篇
  2013年   1287篇
  2012年   897篇
  2011年   1090篇
  2010年   1057篇
  2009年   1214篇
  2008年   1039篇
  2007年   1219篇
  2006年   1060篇
  2005年   565篇
  2004年   533篇
  2003年   539篇
  2002年   559篇
  2001年   508篇
  2000年   410篇
  1999年   333篇
  1998年   322篇
  1997年   328篇
  1996年   254篇
  1995年   261篇
  1994年   236篇
  1993年   182篇
  1992年   209篇
  1991年   181篇
  1990年   195篇
  1989年   187篇
  1988年   156篇
  1987年   182篇
  1986年   170篇
  1985年   205篇
  1984年   198篇
  1983年   197篇
  1982年   188篇
  1981年   172篇
  1980年   162篇
  1979年   182篇
  1978年   158篇
  1977年   142篇
  1976年   133篇
  1975年   136篇
  1974年   125篇
  1973年   165篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
82.
83.
84.
85.
86.
87.
88.
89.
The central magnetic field and rotation of the solar radiative zone are responsible for corrections to the g-mode frequencies. Magnetogravitational spectra are calculated analytically in a simple one-dimensional MHD model that goes beyond the WKB approximation and avoid any cusp resonances that trap the wave within the radiative zone in the presence of a weak magnetic background. The calculations are compared with spacecraft observations of the 1% frequency shifts for candidate g-modes found in the SOHO GOLF experiment. The magnetic correction is the main contribution for a strong magnetic field satisfying the approximation used. It is shown that a constant magnetic field of 700 kG in the radiative zone provides the required frequency shift for the n = ?10 g-mode. The rotational correction, which is due to the Coriolis force in the one-dimensional model used, is much less than a percent (αΩ ≤ 0.003).  相似文献   
90.
Internal surface, formation factor, Nuclear Magnetic Resonance (NMR)-T2 relaxation times and pore radius distributions were measured on representative core samples for the estimation of hydraulic permeability. Permeability is estimated using various versions of the classic Kozeny–Carman-equation (K–C) and a further development of K–C, the fractal PaRiS-model, taking into account the internal surface. In addition to grain and pore size distribution, directly connected to permeability, internal surface reflects the internal structure (“micro morphology”). Lithologies could be grouped with respect to differences in internal surface. Most melt rich impact breccia lithologies exhibit large internal surfaces, while Tertiary post-impact sediments and Cretaceous lithologies in displaced megablocks display smaller internal surfaces. Investigations with scanning electron microscopy confirm the correlation between internal surface and micro morphology. In addition to different versions of K–C, estimations by means of NMR, pore radius distributions and some gas permeability measurements serve for cross-checking and calibration. In general, the different estimations from the independent methods and the measurements are in satisfactory accordance. For Tertiary limestones and Suevites bulk with very high porosities (up to 35%) permeabilites between 10−14 and 10−16 m2 are found, whereas in lower Suevite, Cretaceous anhydrites and dolomites, bulk permeabilites are between 10−15 and 10−23 m2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号