首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108434篇
  免费   1723篇
  国内免费   1640篇
测绘学   3290篇
大气科学   7636篇
地球物理   21418篇
地质学   41477篇
海洋学   8639篇
天文学   21103篇
综合类   2368篇
自然地理   5866篇
  2022年   557篇
  2021年   973篇
  2020年   1029篇
  2019年   1127篇
  2018年   6823篇
  2017年   6003篇
  2016年   5161篇
  2015年   1771篇
  2014年   2748篇
  2013年   4646篇
  2012年   3726篇
  2011年   6287篇
  2010年   5118篇
  2009年   6397篇
  2008年   5612篇
  2007年   6016篇
  2006年   3619篇
  2005年   2881篇
  2004年   2976篇
  2003年   2816篇
  2002年   2538篇
  2001年   2179篇
  2000年   2026篇
  1999年   1607篇
  1998年   1687篇
  1997年   1590篇
  1996年   1288篇
  1995年   1311篇
  1994年   1145篇
  1993年   1006篇
  1992年   993篇
  1991年   899篇
  1990年   987篇
  1989年   859篇
  1988年   769篇
  1987年   960篇
  1986年   793篇
  1985年   1012篇
  1984年   1084篇
  1983年   1016篇
  1982年   962篇
  1981年   858篇
  1980年   806篇
  1979年   740篇
  1978年   728篇
  1977年   659篇
  1976年   643篇
  1975年   603篇
  1974年   602篇
  1973年   600篇
排序方式: 共有10000条查询结果,搜索用时 109 毫秒
231.
The Ultra-luminous Compact X-ray Sources (ULXs)in nearby spiral galaxies and the Galactic super-luminaljet sources sharethe common spectral characteristic that they haveextremely high disk temperatures which cannot be explainedin the framework of the standard accretion disk modelin the Schwarzschild metric. We have calculated an extreme Kerr disk model to examine if the Kerr disk model can instead explain the observed `too hot' accretion disk spectra.We found that the Kerr disk spectrum becomes significantly hardercompared to the Schwarzschild disk only when the disk is highlyinclined.For super-luminal jet sources, which are known to beinclined systems, the Kerr disk model may thuswork if we choose proper values for the black hole angular momentum. For the ULXs, however, the Kerr disk interpretation will be problematic,as is is highly unlikely that their accretion disks are preferentiallyinclined.  相似文献   
232.
VALIDATION - ANOTHER PERSPECTIVE   总被引:1,自引:0,他引:1  
  相似文献   
233.
In this, the third in a series of three papers concerning the SuperCOSMOS Sky Survey, we describe the astrometric properties of the data base. We describe the algorithms employed in the derivation of the astrometric parameters of the data, and demonstrate their accuracies by comparison with external data sets using the first release of data, the South Galactic Cap survey. We show that the celestial coordinates, which are tied to the International Celestial Reference Frame via the Tycho–2 reference catalogue, are accurate to better than ±0.2 arcsec at J , R ∼19,18 , rising to ±0.3 arcsec at J , R ∼22,21 , with positional-dependent systematic effects from bright to faint magnitudes at the ∼0.1-arcsec level. The proper motion measurements are shown to be accurate to typically ±10 mas yr−1 at J , R ∼19,18 , rising to ±50 mas yr−1 at J , R ∼22,21 , and are tied to zero using the extragalactic reference frame. We show that the zero-point errors in the proper motions are ≤1 mas yr−1 for R >17 , and are no larger than ∼10 mas yr−1 for R <17 mas yr−1 .  相似文献   
234.
We present multiwaveband photometric and optical spectropolarimetric observations of the R =15.9 narrow emission-line galaxy R117_A which lies on the edge of the error circle of the ROSAT X-ray source R117. The overall spectral energy distribution of the galaxy is well modelled by a combination of a normal spiral galaxy and a moderate-strength burst of star formation. The far-infrared and radio emission is extended along the major axis of the galaxy, indicating an extended starburst.
On positional grounds, the galaxy is a good candidate for the identification of R117, and the observed X-ray flux is very close to what would be expected from a starburst of the observed far-infrared and radio fluxes. Although an obscured high-redshift QSO cannot be entirely ruled out as contributing some fraction of the X-ray flux, we find no candidates to K =20.8 within the X-ray error box, and so conclude that R117_A is responsible for a large fraction, if not all, of the X-ray emission from R117.
Searches for indicators of an obscured AGN in R117_A have so far proven negative; deep spectropolarimetric observations show no signs of broad lines to a limit of 1 per cent and, for the observed far-infrared and radio emission, we would expect 10 times greater X-ray flux if the overall emission were powered by an AGN. We therefore conclude that the X-ray emission from R117 is dominated by starburst emission from the galaxy R117_A.  相似文献   
235.
Authors' Reply     
Abstract— Jull et al. propose an alternative interpretation of our depth vs. 14C data measured on a peat core from the central Tunguska impact site (Rasmussen et al., 1999). We find that the proposed alternative is untenable.  相似文献   
236.
We review elemental abundances derived for planetary nebula (PN) WCcentral stars and for their nebulae. Uncertainties in the abundances of[WC] stars are still too large to enable an abundance sequenceto be constructed. In particular it is not clear why the hotter [WCE]stars have C and O abundances which are systematically lower than those oftheir supposed precursors, the [WCL] stars. This abundance differencecould be real or it may be due to unaccounted-for systematic effects inthe analyses. Hydrogen might not be present in [WC] star winds asoriginallysuggested, since broad pedestals observed at the base of nebular lines canplausibly be attributed to high velocity nebular components. It isrecommended that stellar abundance analyses should be carried out withnon-LTE model codes, although recombination line analyses can provideuseful insights. In particular, C II dielectronic recombinationlines provide a unique means to determine electron temperatures in cool[WC] star winds. We then compare the abundances found for PNe which have [WC] central starswith those that do not. Numerous abundance analyses of PNe have beenpublished, but comparisons based on non-uniform samples and methods arelikely to lack reliability. Nebular C/H ratios, which might be expected todistinguish between PNe around H-poor and H-rich stars, are rather similarfor the two groups, with only a small tendency towards larger values fornebulae around H-deficient stars. Nebular abundances should be obtainedwith photoionization models using the best-fitting non-LTE modelatmosphere for the central star as the input. Heavy-metal line blanketingstill needs to be taken into consideration when modeling the central star,as its omission can significantly affect the ionizing fluxes as well asthe abundance determinations. We discuss the discrepancies between nebularabundances derived from collisionally excited lines and thosederived from optical recombination lines, a phenomenon that may havelinks with the presence of H-deficient central stars.  相似文献   
237.
Parallax measurements allow distances to celestial objects to be determined. Together with measurements of their position on the celestial sphere, they give a full three-dimensional picture of the location of the objects relative to the observer. The distortion of the parallax value of a distant source affected by weak microlensing is considered. This means that the weak microlensing leads to distortion of the distance scale. The gravitational deflection causes a retrograde apparent motion of the image, which is revealed as a negative parallax. It is shown that the distortions may significantly change the parallax values when they amount to several microseconds of arc. In particular, at this level many measured values of parallaxes should be negative.  相似文献   
238.
We consider the structural peculiarities of Uranus’s satellite system associated with its separation into two groups: inner equatorial satellites moving in nearly circular orbits and distant irregular satellites with retrograde motion in highly elliptical orbits. The intermediate region is free from satellites in a wide range of semimajor axes. By analyzing the evolution of satellite orbits under the combined effect of solar attraction and Uranus’s oblateness, we offer a celestial-mechanical explanation for the absence of equatorial satellites in this region. M.L. Lidov’s studies during 1961–1963 have served as a basis for our analysis.  相似文献   
239.
The dust shell around the evolved star HD 179821 has been detected in scattered light in near-IR imaging polarimetry observations. Here, we subtract the contribution of the unpolarized stellar light to obtain an intrinsic linear polarization of between 30 and 40 per cent in the shell that seems to increase with radial offset from the star. The J - and K -band data are modelled using a scattering code to determine the shell parameters and dust properties. We find that the observations are well described by a spherically-symmetric distribution of dust with an r −2 density law, indicating that when mass-loss was occurring, the mass-loss rate was constant. The models predict that the detached nature of a spherically-symmetric, optically-thin dust shell, with a distinct inner boundary, will only be apparent in polarized flux. This is in accordance with the observations of this and other optically-thin circumstellar shells, such as IRAS 17436+5003. By fitting the shell brightness we derive an optical depth to the star that is consistent with V -band observations and that, assuming a distance of 6 kpc, gives an inner-shell radius of     , a dust number density of     at r in and a dust mass of     . We have explored axisymmetric shell models but conclude that any deviations from spherical symmetry in the shell must be slight, with an equator-to-pole density contrast of less than 2:1. We have not been able to fit simultaneously the high linear polarizations and the small     colour excess of the shell and we attribute this to the unusual scattering properties of the dust. We suggest that the dust grains around HD 179821 either are highly elongated or consist of aggregates of smaller particles.  相似文献   
240.
An exact analysis of the coverage obtained by spacecraft using cross-track scanning and nadir-centered conical imaging, under imposed viewing obliqueness and resolution requirements, is presented. In addition to exact expressions for the area acquired and the area acquisition rate, envelope theory is introduced to obtain the boundary of the imaged area. These expressions are relatively compact, allowing rapid machine computation. The effects of the sun phase angle, and of imaging system limitations are also examined. The Galileo mission encounter with Callisto is used as a numerical example, from which certain general conclusions are drawn regarding optimal imaging trajectories.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号