首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   1篇
地球物理   4篇
地质学   11篇
海洋学   4篇
天文学   6篇
自然地理   1篇
  2020年   1篇
  2016年   2篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1995年   2篇
  1992年   1篇
  1989年   2篇
  1987年   1篇
  1980年   1篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有26条查询结果,搜索用时 22 毫秒
11.
Emerging groundwater contaminants such as per- and polyfluoroalkyl substances (PFAS) may impact surface-water quality and groundwater-dependent ecosystems of gaining streams. Although complex near-surface hydrogeology of stream corridors challenges sampling efforts, recent advances in heat tracing of discharge zones enable efficient and informed data collection. For this study, we used a combination of streambed temperature push-probe and thermal infrared methods to guide a discharge-zone-oriented sample collection along approximately 6 km of a coastal trout stream on Cape Cod, MA. Eight surface-water locations and discharging groundwater from 24 streambed and bank seepages were analysed for dissolved oxygen (DO), specific conductance, stable water isotopes, and a range of PFAS compounds, which are contaminants of emerging concern in aquatic environments. The results indicate a complex system of groundwater discharge source flowpaths, where the sum of concentrations of six PFAS compounds (corresponding to the U.S. Environmental Protection Agency third Unregulated Contaminant Monitoring Rule “UCMR 3”) showed a median concentration of 52 ± 331 (SD) ng/L with two higher outliers and three discharges with PFAS concentrations below the quantification limit. Higher PFAS concentration was related (− 0.66 Spearman rank, p < .001) to discharging groundwater that showed an evaporative signature (deuterium excess), indicating flow through at least one upgradient kettle lake. Therefore, more regional groundwater flowpaths originating from outside the local river corridor tended to show higher PFAS concentrations as evaluated at their respective discharge zones. Conversely, PFAS concentrations were typically low at discharges that did not indicate evaporation and were adjacent to steep hillslopes and, therefore, were classified as locally recharged groundwater. Previous research at this stream found that the native brook trout spawn at discharge points of groundwater recharged on local hillslopes, likely in response to generally higher levels of DO. Our study shows that by targeting high oxygen discharges the trout may thereby be avoiding emerging contaminants such as PFAS in groundwater recharged farther from the stream.  相似文献   
12.
Pile foundations are frequently subjected to cyclic lateral loads. Wave and wind loads on offshore structures will be applied in different directions and times during the design life of a structure. Therefore, the magnitude and direction of these loads in conjunction with the dead loads should be considered. This paper investigates a loading scenario where a monotonic lateral load is applied to a pile, followed by two‐way cycling in a direction perpendicular to the initial loading. This configuration is indicative of the complexity of loading that may be considered and is referred to in the paper as ‘T‐shaped’ loading. The energy‐based numerical model employed considers two‐dimensional lateral loading in an elasto‐plastic soil, with coupled behaviour between the two perpendicular directions by local yield surfaces along the length of the pile. The behaviour of the soil–pile system subjected to different loading combinations has been divided into four categories of shakedown previously proposed for cyclic loading of structures and soils. A design chart has been created to illustrate the type of pile behaviour for a given two‐dimensional loading scenario. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
13.
The interpretation of the Cretaceous–Paleogene (K–Pg) iridium anomaly – and other impact ejecta – as the result of a single, large asteroid impact has been the subject of much debate, in part due to the distribution of impact markers beyond the narrow confines of the K–Pg boundary sedimentary layer. Here, we revisit the hypothesized processes leading to the shape of K–Pg iridium profiles including geochemical remobilization and/or diffusion, prolonged deposition, volcanism, multiple impacts, and sediment mixing. Using evidence from the literature and modeling of one North Pacific site, we find that sediment mixing of a single impact event provides the most parsimonious mechanism for iridium profile shape in open ocean oxic sediments, while the increase in background iridium bracketing the boundary likely has a volcanic origin. In some past studies, a sediment mixing mechanism for iridium profile shape was ruled out based on an overly simplified set of expectations for the effect of sediment mixing on markers of geologically instantaneous events. Thus, we introduce and use a Lagrangian sediment mixing model to illustrate the theoretical effects of mixing on records of rapid events. The sediment mixing origin for iridium anomaly shape, the correspondence in mixing extent between iridium and microfossils, and the fit of sediment mixing models to an empirical iridium profile indicate that iridium may provide a better tracer of mixing than previously proposed K–Pg mixing tracers such as Ni-spinels.  相似文献   
14.
The spatial and temporal distribution of humic substances in aquatic ecosystems can have important effects on ecosystem productivity, negatively impacting primary productivity while positively impacting secondary productivity. In the present investigation, a large shallow lake ecosystem was studied to determine the spatial and seasonal variation of the composition and concentration of humic substances. Concentrations of total dissolved organic matter, humic acid, and fulvic acid were found to display significant spatial distributions (1.3…13.5 mg/L, DOM; 0.1…5.4 mg/L, HA). The distribution is described by using mapping techniques and the analysis of the spatial distribution of the lake. An analysis of the seasonal variations also indicated the dependence of the occurrence of these compounds on meteorological and hydrological conditions. To identify the potential sources of these organic materials, an analysis was made of the ratio of humic and fulvic acid fractions and total DOM. It was found that areas of high DOM concentration coincided with the areas of highest HA percentage of total DOM. Furthermore using the ratio of the normalised concentrations of HA, FA, and residual DOM (< 5000 g/mol) it was found that areas dominated by each are spatially distinct. This confirms the hypothesis that in these shallow lakes, photodegradation and bacterioplankton activity will create a residence time dependent zonation of each component of the total DOM.  相似文献   
15.
Changing social and economic drivers of land use require a more integrated approach to land conservation that addresses both the land and the socio-economic context of land use. Technical and legal conservation focused at the single-parcel scale is insufficient. This research examines ecological entrepreneurship, discussed by Marsden and Smith (2005), as an integrated conservation strategy that targets environmental as well as economic goals. Specifically, we explore the roles and functions that must be provided by Ecological Entrepreneurship Support Networks (EESNs). In particular, we look at land trusts engaging in these efforts. Through a series of case studies, we examine the roles and functions, as well as motivations and challenges faced by land trusts involved in EESNs. The lessons learned through these case studies are intended to inform broader sustainable development efforts.  相似文献   
16.
The granular and polymer composite nature of kerogen-rich shale   总被引:2,自引:2,他引:0  
In the past decade, mechanical, physical, and chemical characterization of reservoir shale rocks, such as the Woodford shale, which is kerogen-rich shale (KRS), has moved toward micro- and nanoscale testing and analyses. Nanoindentation equipment is now widely used in many industrial and university laboratories to measure shale anisotropic Young’s moduli, kerogen stiffness, plastic yield parameters, and other isotropic and anisotropic poromechanical and viscoelastic properties. However, to date, failure analyses of KRS and the effects of organic components on the tensile strength have not been observed or measured at the micro- or nanoscales. In this study, preserved kerogen-rich Woodford shale samples manufactured in micro-beam and micro-pillar geometries were mechanically tested and brought to failure in tension and compression, respectively. These tests were conducted in situ using a nanoindenter inside a scanning electron microscope (SEM). The load versus displacement curves of prismatic micro-cantilever beams were analyzed in light of high-resolution images collected during tensile fracture initiation, propagation, and ultimately sample failure. The micro-pillar geometries were subjected to a uniaxial compressive load and were also brought to failure while capturing measurements of stress and strain. It was found that, within just a few hundred microns of the KRS micro-cantilever beams, both brittle and ductile failure modes were observed. In the ductile plastic domain, strain-softening and strain-hardening behaviors were identified and characterized. These were not due to confining stress variations, but due to the volume of the organic matter and the way it is interlaced with the shale minerals in and around the failure planes. The tensile strength characteristics and the large modulus of toughness of kerogen, which is a cross-linked polymer, definitely weigh heavily in our engineering field applications, such as hydraulic fracking, which is a Mode I tensile fracture opening and propagation phenomenon. This practice demands that, due to the complex composite nature of KRS, mechanical characterization be not only for unconfined compressive strength but also for unconfined tensile strength and moduli of ruptures. At the end of this study, the need for nanometer scale mechanical characterization of KRS will become apparent. These nano- and micro-scale shale failure tests reinforce our previous understanding of the heterogeneous composite nature of Woodford KRS and its complex behavior, as well as other source shale reservoir formations.  相似文献   
17.
The Astrophysical Research Consortium 3.5 m telescope facility on Apache Point (2800 m above sea level) near the National Solar Observatory in southern New Mexico is nearing completion. The telescope mount has been installed and testing and fabrication of remaining subassemblies are underway. Thef/1.75 lightweight honeycomb primary mirror was cast April 1988 by the Steward Observatory Mirror Laboratory and is currently being figured.The 3.5 m optical telescope is an altitude over azimuth mechanical structure with Ritchey-Chrétien optics. The lightweight (1800 kg) mirror leads to a mount weighting only 41000 kg; readily available rolling element bearings are used to achieve the necessary performance at low cost and without the heat dissipation of externally pressurized types. Drive torques are applied by DC servo-driven capstans. These are coupled by friction to large diameter drive disks on each axis. No gears are used. Position feedback comes from low cost incremental encoders, also capstan coupled.We have recently completed a series of measurements of the telescope mount. These measurements show that the telescope is very stiff; the lowest natural frequencies are about 7.2 Hz. Initial tracking performance is good and the mount shows high resistance to wind-induced vibration. Our experience during acceptance testing suggests that routine power spectral analysis of drive motor torque and other parameters could be an important tool in the early detection of failures.Paper presented at the Symposium on the JNLT and Related Engineering Developments, Tokyo, November 29–December 2, 1988.  相似文献   
18.
19.
Perturbations of the lake water balance, inputs of heavy metals to lakes, and intensifying fertilization of lakes through input and accumulation of phosphorus—these three classes of phenomena are among the more important background processes in lake restoration. Lake restoration consists of a series of measures animed at producing a homeostatic response of a lake system to external perturbations. The success of its implementation is affected by the morphometric and edaphic parameters of different types of lakes. The relationship between the volume (V) and mean-depth of fresh-water lakes indicates a trend of . Glacial lakes occuring on or near crystalline shields have relatively shallow depths, whereas volcanic lakes, rift valley and deep valley lakes have relatively greater depths for the same volume. For saline lakes (21 lakes, V>1 km3) that undergo cycles of expansion and shrinkage, the V to relationship is closer to power 1. Water residence times (τ) of small and big fresh-water lakes show a trend of τ approximately linear in or τ∝V0.3. Volcanic lakes and Maare have longer residence times in comparison to other lakes of similar volumes. For the major inorganic chemical species and heavy metals, the regulatory upper-limit concentrations in drinking water in the USA and EEC are from several times to more than 100 times higher than their concentrations in a global mean river water. Only three elements (Fe, P, and Al) occur in river water at concentrations approaching such upper-limit recommendations. Rates of accumulation of phosphorus in lake water and sediments, computed as the difference between input and ouflow removal rates for 23 fresh-water lakes, are generally lower for lakes of longer water residence time. The rate of accumulation is a measure of homeostatic response of the lake system to input load: it is equivalent to the rate of all the removal processes needed to maintain phosphorus concentration in lake water at a steady state.  相似文献   
20.
Neutron diffraction data suitable for Rietveld refinements were collected on a powder sample of synthetic Mg(OH)2 by the Polaris time-of-flight spectrometer (ISIS spallation source, U.K.) at 10-4 7.8(3) and 10.9(6) GPa. The Paris-Edinburgh high-pressure cell with WC anvils was used. Pressure calibration and equation-ofstate results were attained by separate runs with an NaCl internal standard. Interpolation of p(V) data by the fourth-order Birch-Murnaghan e.o.s. yields K 0=41(2) GPa, K0=4(2) and K0=1.1(9) GPa-1. The bulk modulus obtained is smaller than previously reported results. Rietveld refinements (R prof =1.45% and 2.02% at 10-4 and 10.9 GPa) show that H lies on the threefold axis (1/3, 2/3, z) up to 10.9 GPa, where a model with H disordered in (x, 2x, z) can be refined. In the latter case, a hydrogen bond with O-H=0.902(7), H..O=2.026(8) Å and <>=145.9 (7)° is observed. Differences with previous results for deuterated brucite are discussed. The onset of H disorder, and a jump of the c/a ratio vs. pressure at 6–7 GPa, may be related to a second-order phase transition consistent with recently reported Raman spectroscopic results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号