首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   308篇
  免费   10篇
  国内免费   9篇
测绘学   7篇
大气科学   18篇
地球物理   62篇
地质学   144篇
海洋学   15篇
天文学   55篇
综合类   2篇
自然地理   24篇
  2021年   4篇
  2020年   3篇
  2019年   8篇
  2018年   6篇
  2017年   4篇
  2016年   8篇
  2015年   8篇
  2014年   16篇
  2013年   9篇
  2012年   10篇
  2011年   7篇
  2010年   8篇
  2009年   15篇
  2008年   13篇
  2007年   10篇
  2006年   7篇
  2005年   7篇
  2004年   16篇
  2003年   10篇
  2002年   8篇
  2001年   11篇
  2000年   4篇
  1999年   9篇
  1998年   9篇
  1997年   5篇
  1996年   6篇
  1995年   4篇
  1994年   7篇
  1993年   6篇
  1992年   4篇
  1991年   2篇
  1989年   3篇
  1987年   7篇
  1986年   5篇
  1985年   5篇
  1984年   4篇
  1983年   2篇
  1982年   6篇
  1981年   8篇
  1980年   9篇
  1979年   4篇
  1978年   7篇
  1976年   4篇
  1975年   1篇
  1974年   3篇
  1973年   2篇
  1972年   1篇
  1971年   3篇
  1969年   3篇
  1968年   1篇
排序方式: 共有327条查询结果,搜索用时 15 毫秒
321.
The Hf and Nd isotopic evolution of the Musgrave Province, central Australia, is used to constrain the timing of crust formation and lithospheric organisation of Proterozoic Australia. The dataset from this region challenges two widely held tenets of Hf and Nd isotope systematics, namely; that crust formation events can only be identified as periods when crystallisation ages correspond to model ages, and that linear Hf evolution arrays away from depleted mantle (along crustal Lu/Hf or Sm/Nd slopes) reflect reworking of the same source.Hf isotopes in Musgrave Province zircon crystals indicate two major crust formation events at c. 1900 Ma and at 1600–1550 Ma. Although no juvenile rocks or crystals are known from c. 1900 Ma, radiogenic addition into the crust at this time is required to account for consistent Nd and Hf evolution patterns, which show no indication of an initially heterogeneous source. Oxygen isotopes in zircon grains confirm that much of the c. 1900 Ma Hf isotopic signal is not compromised by mixtures. Furthermore, the correspondence between mantle extraction and the commencement of reworking of Archean material supports new crust generation at c. 1900 Ma and a coupling between lower and upper crustal processes. The c. 1900 Ma timing of juvenile addition is dissimilar to that in the Albany–Fraser and Arunta Orogens and may reflect continental arc development on the margin of a southern continent.The general Hf isotopic evolution trend of the Musgrave Province apparently reflects reworking from a dominant c. 1900 Ma source with some additional unradiogenic and radiogenic input through time. However, in the 1220–1050 Ma interval this apparent isotopic evolution contrasts with geological observations that indicate input of voluminous mantle-derived material. Intracontinental rifts and other regions with sustained very-high temperature crustal recycling processes generate magmatic provinces with extreme HFSE-enrichment. This can have a profound influence on isotopic evolution trends, suppressing typical juvenile addition patterns. Isotopic mixture modelling indicates that a significant volume of mantle derived material can be accommodated within HFSE enriched magmas without diverging isotopic signatures from apparent reworking trends. In the Musgrave Province, the crust had become so HFSE enriched during the prolonged Musgrave Orogeny (1220–1150 Ma) that it was insensitive to mantle input, which is estimated to have been as much as 85% during this event.  相似文献   
322.
The photometric properties of local areas on Mars are studied using Minnaert's rule of surface scattering to analyze Mariner 6 and 7 Infrared Spectrometer data. Several bright deserts, Hellas, and the south polar cap are found to obey Minnaert's function well. The coefficients B0(α, λ) and k(α, λ) are obtained at α = 39, 48, 56, 84° and λ = 1.85, 2.23, 3.50 μm. Observed bright regions all have similar values of k, except for Hellas and the south polar cap. The lower k of Hellas is apparently caused by microscopic effects rather than by large-scale roughness due to cratering. The higher k of the cap is similar to terrestrial snows in the visual at the same phase angle. Using existing Earth-based observations, at smaller α and λ, a bolometric Bond albedo of A1 = 0.24 ± 0.05 is calculated.  相似文献   
323.
The assemblage NiO+Ni-Pd alloy has been calibrated as a precise oxygen fugacity sensor in the temperature range 850–1250 K at 1 bar, using an electrochemical technique with oxygen-specific CSZ electrolytes, and Ni+NiO and Cu+Cu2O as the reference electrodes. Nine compositions were studied, ranging from 0.12 to 0.83 X Ni alloy . Steady EMFs, implying equilibrium, were rapidly achieved in all cells, and were found to be reversible on increasing and decreasing temperature with a precision approaching 0.1 mV. The estimated accuracy of the measurements on each cell is ±0.2 mV (1, corresponding to ±0.003 log-bar units in fo2 at 1273 K). Compositions of the Ni-Pd alloys were measured after each run by electron microprobe, and these compositions were then checked for internal consistency by measuring the lattice parameter by X-ray diffraction. Nickel-rich alloys show positive deviations from ideality and endothermic enthalpies of mixing, but palladium-rich compositions have exothermic enthalpies of mixing and strong negative deviations from ideality. The excess entropies of mixing are positive for all compositions, and correlate approximately with the excess volumes of mixing. The highly asymmetrical deviations from ideality are well described by a polynomial expression of the Redlich-Kister form, with three terms for the enthalpies, and two for the excess entropies and volumes of mixing. The experimental data from this study have been used to re-formulate the Ni-Pd oxygen fugacity sensor to give an expression; O2 ss = O2 NNO – 2RT ln X Ni alloy – [2 · (1 – X Ni alloy )2 · [(–2165–7.958 · T) + (9409 – 0.888 · T) · (4 X Ni alloy – 1) + 2089 · (6 X Ni alloy – 1) · (2 X Ni alloy – 1)]](850<T<1300) where O2 ss is in J mol-1, T is in kelvins, and the expression for O2 NNO is that given by O'Neill and Pownceby (1993). Values in terms of log fo2 may be obtained from the above by dividing by RT ln 10. The estimated standard error in O2 ss is on the order of ±200 J mol-1, which is approximately ±0.01 log-bar units in fo2 at 1273 K.  相似文献   
324.
The Pyrenees is a young mountain belt formed as part of the larger Alpine collision zone. This excursion explores the development of the Pyrenean Mountain Belt in southern France, from its early extensional phase in the mid‐Cretaceous and subsequent collisional phase, through its uplift and erosion in the Late Cretaceous and again in the Eocene, which led to the development of the Aquitaine‐Languedoc foreland basin. One of the complexities of the Pyrenean Belt is that thrusting, uplift and erosion during the Pyrenean orogeny exposed older Variscan basement rocks in the central core of the mountains, rocks which were metamorphosed during an earlier event in the late Carboniferous. Thus, this orogenic belt also tells the story of an earlier collision between Laurussia in the north and Gondwana in the south at c. 300 Ma, prior to the onset of the Pyrenean events at c. 100 Ma. Here we seek to unravel these two separate orogenic stories.  相似文献   
325.
A combination of EMPA, sensitive high resolution ion microprobe (SHRIMP II) and/or LA-ICP-MS techniques was used to measure the concentration of selenium (Se) in NIST SRM 610, 612, 614 and a range of reference materials. Our new compiled value for the concentration of Se in NIST SRM 610 is 112 ± 2 μg g−1. The concentration of Se in NIST SRM 612, using NIST SRM 610 for calibration, determined using LA-ICP-MS (confirmed using SHRIMP II) was 15.2 ± 0.2 μg g−1. The concentration of Se in NIST SRM 614, using LA-ICP-MS was 0.394 ± 0.012 μg g−1. LA-ICP-MS determination of Se in synthetic geological glasses BCR-2G, BIR-1G, TB-1G and the MPI-DING glasses showed a range in concentrations from 0.062 to 0.168 μg g−1. Selenium in the natural glass, VG2, was 0.204 ± 0.028 μg g−1.  相似文献   
326.
This study proposes as a working hypothesis that small white-light flares accompany all major (proton) flare events and suggests a new method for systematically finding these patches of white-light emission. The new technique consists of the time-wise application of the photographic cancellation method to detect small time-varying features around the time of the impulsive phase of a flare.  相似文献   
327.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号