Abstract. Cathodoluminescence (CL) color, rare earth element (REE) content, sulfur and oxygen isotopes and fluid inclusions of anhydrite, which frequently filled in hydrothermal veins in the Kakkonda geothermal system, were investigated to elucidate the spatial, temporal and genetical evolution of fluids in the deep reservoir. The anhydrite samples studied are classified into four types based on CL colors and REE contents: type-N (no color), type-G (green color), type-T (tan color) and type-S (tan color with a high REE content). In the shallow reservoir, only type-N anhydrite is observed. In the deep reservoir, type-G anhydrite occurs in vertical veins whereas type-T and -N in lateral veins. Type-S anhydrite occurs in the heat-source Kakkonda Granite. The CL textures revealed that type-G anhydrite deposited earlier than type-T in the deep reservoir, implying that fracture system was changed from predominantly vertical to lateral. Studies of fluid inclusions and δ34S and δ18O values of the samples indicate that type-N anhydrite deposited from diluted fluids derived from meteoric water, whereas type-G, -T and -S anhydrites deposited from magmatic brines derived from the Kakkonda Granite with the exception of some of type-G with recrystallization texture and no primary fluid inclusion, which deposited from fossil seawater preserved in the sedimentary rocks. Type-G, -T and -S anhydrites exhibit remarkably different chondrite-normalized REE patterns with a positive Eu anomaly, with a convex shape (peak at Sm or Eu) and with a negative Eu anomaly, respectively. The difference in the patterns might result from the different extent of hydrothermal alteration of the reservoir rocks and contribution of the magmatic fluids. 相似文献
The authors report here halogen concentrations in pore waters and sediments collected from the Mallik 5L-38 gas hydrate production research well, a permafrost location in the Mackenzie Delta, Northwest Territories, Canada. Iodine and Br are commonly enriched in waters associated with CH4, reflecting the close association between these halogens and source organic materials. Pore waters collected from the Mallik well show I enrichment, by one order of magnitude above that of seawater, particularly in sandy layers below the gas hydrate stability zone (GHSZ). Although Cl and Br concentrations increase with depth similar to the I profile, they remain below seawater values. The increase in I concentrations observed below the GHSZ suggests that I-rich fluids responsible for the accumulation of CH4 in gas hydrates are preferentially transported through the sandy permeable layers below the GHSZ. The Br and I concentrations and I/Br ratios in Mallik are considerably lower than those in marine gas hydrate locations, demonstrating a terrestrial nature for the organic materials responsible for the CH4 at the Mallik site. Halogen systematics in Mallik suggest that they are the result of mixing between seawater, freshwater and an I-rich source fluid. The comparison between I/Br ratios in pore waters and sediments speaks against the origin of the source fluids within the host formations of gas hydrates, a finding compatible with the results from a limited set of 129I/I ratios determined in pore waters, which gives a minimum age of 29 Ma for the source material, i.e. at the lower end of the age range of the host formations. The likely scenario for the gas hydrate formation in Mallik is the derivation of CH4 together with I from the terrestrial source materials in formations other than the host layers through sandy permeable layers into the present gas hydrate zones. 相似文献
Dibromomethane (CH2Br2), a natural stratospheric ozone depleting substance, is mostly emitted from the ocean, but the relative importance of coastal (or macroalgae) and open ocean emissions is unknown. We made long-term high-frequency measurements of CH2Br2 concentrations at two remote coastal sites in Japan, on the subtropical Hateruma Island (poor in macroalgae) and at Cape Ochiishi (rich in macroalgae). CH2Br2 concentrations at Hateruma showed prominent seasonal variation, being lower in summer (around 0.94 ppt) than in winter (around 1.23 ppt). In contrast, CH2Br2 concentrations at Ochiishi were highly variable, often exceeding 2 ppt in the summer but with minimum baseline concentrations close to those from Hateruma; in the winter the concentrations were almost constant at about 1.3 ppt. Analysis of the data suggested that (1) emissions from macroalgae were not likely to extend offshore, but instead were localized near the shore, (2) strong macroalgal emissions of CH2Br2 were almost limited to the summer, but it was not reflected in the seasonality of the baseline concentrations of CH2Br2 in the atmosphere, and therefore (3) macroalgal or coastal emissions of CH2Br2 in the temperate zone might have a rather limited contribution to the global CH2Br2 sources. These findings are especially important for the understanding of the tropospheric and stratospheric bromine budget. 相似文献
A wind-tunnel experiment was carried out to test a hypothesis that the turbulence characteristics in the near-neutral surface layer are largely determined by detached eddies from above. The surrogate detached eddies were generated by using an active turbulence grid installed at the front of the test section and the parameters of the grid were chosen such that the fully developed logarithmic layer downstream consists of a turbulent flow that has similar normalized intensity to that typically observed in the near-neutral atmospheric surface layer. The effects of the detached eddies on turbulence characteristics were investigated by comparison with a second experiment without detached eddies. The influence of the detached eddies on the logarithmic layer was mostly on the coherent structures; the logarithmic layer with the detached eddies revealed a multi-layer structure similar to that found in the atmosphere where the lower part of the surface layer is dominated by sweep-like events and the upper part by ejection-like events. Our experiments show that the mean velocity gradient and the Reynolds shear stress were, however, not affected significantly by the detached eddies and hence the eddy viscosity. 相似文献
Measurements on modern soil color suggest well functional relationships between the soil formation process and the present climatic factors. The redness and yellowness of soil are chiefly caused by the contents of hematite and fullonite, and their correlations to climate are the best in humid regions in tropic and warm temperate regions. The lightness of soil mainly correlates to the organic accumulation, humification and carbonatization processes, and its correlation to climate can only be found in the humid-arid extratropical belt. The humidity and surface roughness of soil have so strong influence on soil color that there are great errors on the measurement of colorness in the field. The study on soil colors of typical loess sections shows that soil color can record the characteristics of Asia monsoon and the global climatic fluctuations well at millennial and ten-thousand-year scales. It can also indicate the pedogenesis and the climatic characteristics which magnetic susceptibility could not be reflected in humidity areas. Therefore, soil color can be used as a new climatic proxy which is easy and quick to measure, and will make an active influence on the study of global changes, geomorphology and Quaternary.
In seismic data processing, serious problems could be caused by the existence of triplication and need to be treated properly for tomography and other inversion methods. The triplication in transversely isotropic medium with a vertical symmetry axis has been well studied and concluded that the triplicated traveltime only occurs for S wave and there is no triplication for P and converted PS waves since the P wave convexity slowness always compensates the S wave slowness concavity. Compared with the vertical symmetry axis model, the research of the triplication in transversely isotropic medium with a tilted symmetry axis is still keeping blank. In order to analyse the triplication for the converted wave in the tilted symmetry axis model, we examine the traveltime of the triplication from the curvature of averaged P and S wave slowness. Three models are defined and tested in the numerical examples to illustrate the behaviour of the tilted symmetry axis model for the triplicated traveltime with the change of the rotation angle. Since the orientation of an interface is related to the orientation of the symmetry axis, the triplicated traveltime is encountered for the converted wave in the tilted symmetry axis model assuming interfaces to be planar and horizontal. The triplicated region is influenced by the place and level of the concave curvature of the P and S wave slowness. 相似文献
Cementitious materials used for radioactive waste repository construction complicate the performance assessment of radioactive waste systems because the use of cement may greatly alter the pH (8–13) of groundwater and release constituents such as calcium ions. Under such conditions, it is important to clarify also the dynamic behavior of silica (silicic acid), in order to evaluate the alteration in the chemical and physical properties of the fractured layer or the host rock surrounding the repository. Since silica undergoes polymerization, precipitation or dissolution depending on the pH and/or temperature, the behavior of silica would be greatly complicated in the presence of other ions. This study is focused on the deposition rates of polysilicic acid and soluble silicic acid with up to 10−3 M Ca ions. In the experiment, Na2SiO3 solution (250 mL, pH > 10, 298 K) was poured into a polyethylene vessel containing amorphous silica powder (0.5 g), and a buffer solution, HNO3, and CaNO3 as Ca ions were sequentially added into the vessel. The pH of the solution was set to 8. The silica, initially in a soluble form at pH > 10 (1.4 × 10−2 M), became supersaturated and either deposited on the solid surface or changed into the polymeric form. Then the concentrations of both poly- and soluble silicic acid were monitored over a 40-day period. The decrease of polysilicic acid became slow with an increase in the concentration of Ca ions in the range of up to 10−3 M. In general, the addition of electrolytes to a supersaturated solution accelerates the aggregation and precipitation of polymeric species. However, the experimental result showed that polysilicic acid in the presence of Ca ions is apparently stable in solution, compared with that under a Ca-free condition. On the other hand, the concentration of soluble silicic acid in the presence of Ca ions immediately became metastable, that is, slightly higher than the solubility of soluble silicic acid. Its dynamic behavior was similar to that in the Ca-free condition. 相似文献
SELENE (Selenological and Engineering Explorer) project started as a joint mission of the former ISAS (Institute of Space
and Astronautical Science) and the former NASDA (National Space Development Agency: the two organizations were merged into
JAXA in 2002) of Japan in 1998. The launch target is rescheduled for 2006 due to delay of completion of launch vehicle, H-IIA.
The SELENE project is now under a sustained design phase. The flight model components were manufactured, and the interface
tests between the bus-system and the mission instruments were completed by the end of March 2004. The functional checks and
calibration for the flight model components are being carried out at present. From the beginning of 2005, the final assembly
tests will start. 相似文献