首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   0篇
地球物理   4篇
地质学   12篇
海洋学   11篇
天文学   6篇
自然地理   3篇
  2019年   2篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2011年   3篇
  2010年   4篇
  2009年   1篇
  2008年   3篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2003年   1篇
  2001年   1篇
  1997年   1篇
  1995年   1篇
  1988年   1篇
  1982年   1篇
  1976年   1篇
  1972年   1篇
  1971年   1篇
  1970年   2篇
  1961年   1篇
  1958年   1篇
  1937年   1篇
排序方式: 共有36条查询结果,搜索用时 788 毫秒
31.
It is widely recognized that the geostrophic flows computed by the dynamic method of Bjerknes and collaborators represent the actual currents pretty faithfully. However, what would be the reason that a geostrophic current derived by only retaining the terms of Coriolis and the pressure gradient forces in the hydrodynamical equations agrees so closely with the actual ocean current of the same area? In this attempt was assumed an imaginative ocean of homogeneous water and uniform depth on a rotating earth but with neither continent nor islands. The average wind distribution observed along several meridians over the Pacific Ocean was assumed to prevail in this sea throughout with no variation in east-west direction. Taking the curvature of the earth surface, rotation of the earth, Coriolis forces, pressure gradients and the horizontal and vertical eddy viscosity into account, the equations of motion were solved and velocity components were derived for all latitudes. A comparison of the east-west components thus obtained with the corresponding components of the geostrophic flows, reveals that they agree well in higher latitudes but there appears a remarkable disagreement in lower latitudes. This means that a special care must be taken in replacing the existing currents with the geostrophic flows at lower latitudes.  相似文献   
32.
33.
Noble gas measurements were performed for nine aubrites: Bishopville, Cumberland Falls, Mayo Belwa, Mount Egerton, Norton County, Peña Blanca Spring, Shallowater, ALHA 78113 and LAP 02233. These data clarify the origins and histories, particularly cosmic-ray exposure and regolith histories, of the aubrites and their parent body(ies). Accurate cosmic-ray exposure ages were obtained using the 81Kr-Kr method for three meteorites: 52 ± 3, 49 ± 10 and 117 ± 14 Ma for Bishopville, Cumberland Falls and Mayo Belwa, respectively. Mayo Belwa shows the longest cosmic-ray exposure age determined by the 81Kr-Kr method so far, close to the age of 121 Ma for Norton County. These are the longest ages among stony meteorites. Distribution of cosmic-ray exposure ages of aubrites implies 4-9 break-up events (except anomalous aubrites) on the parent body. Six aubrites show “exposure at the surface” on their parent body(ies): (i) neutron capture 36Ar, 80Kr, 82Kr and/or 128Xe probably produced on the respective parent body (Bishopville, Cumberland Falls, Mayo Belwa, Peña Blanca Spring, Shallowater and ALHA 78113); and/or (ii) chondritic trapped noble gases, which were likely released from chondritic inclusions preserved in the aubrite hosts (Cumberland Falls, Peña Blanca Spring and ALHA 78113). The concentrations of 128Xe from neutron capture on 127I vary among four measured specimens of Cumberland Falls (0.5-76 × 10−14 cm3STP/g), but are correlated with those of radiogenic 129Xe, implying that the concentrations of (128Xe)n and (129Xe)rad reflect variable abundances of iodine among specimens. The ratios of (128Xe)n/(129Xe)rad obtained in this work are different for Mayo Belwa (0.045), Cumberland Falls (0.015) and Shallowater (0.001), meaning that neutron fluences, radiogenic 129Xe retention ages, or both, are different among these aubrites. Shallowater contains abundant trapped Ar, Kr and Xe (2.2 × 10−7, 9.4 × 10−10 and 2.8 × 10−10 cm3STP/g, respectively) as reported previously (Busemann and Eugster, 2002). Isotopic compositions of Kr and Xe in Shallowater are consistent with those of Q (a primordial noble gas component trapped in chondrites). The Ar/Kr/Xe compositions are somewhat fractionated from Q, favoring lighter elements. Because of the unbrecciated nature of Shallowater, Q-like noble gases are considered to be primordial in origin. Fission Xe is found in Cumberland Falls, Mayo Belwa, Peña Blanca Spring, ALHA 78113 and LAP 02233. The majority of fission Xe is most likely 244Pu-derived, and about 10-20% seems to be 238U-derived at 136Xe. The observed (136Xe)Pu corresponds to 0.019-0.16 ppb of 244Pu, from which the 244Pu/U ratios are calculated as 0.002-0.009. These ratios resemble those of chondrites and other achondrites like eucrites, suggesting that no thermal resetting of the Pu-Xe system occurred after ∼4.5 Ga ago. We also determined oxygen isotopic compositions for four aubrites with chondritic noble gases and a new aubrite LAP 02233. In spite of their chondritic noble gas signatures, oxygen with chondritic isotopic compositions was found only in a specimen of Cumberland Falls (Δ17O of ∼0.3‰). The other four aubrites and the other two measured specimens of Cumberland Falls are concurrent with the typical range for aubrites.  相似文献   
34.
The isotopic compositions of Sm and Gd in lunar regolith samples from the Apollo 16 and 17 deep drill stems showed clear isotopic shifts in 150Sm /149Sm (ε = +124 to +191 for A-16, and +37 to +111 for A-17) and 158Gd/157Gd (ε = +107 to +169 for A-16, and +31 to +84 for A-17) corresponding to neutron fluences of (5.68-9.03) × 1016 n cm−2 for A-16 and (1.85-5.04) × 1016 n cm−2 for A-17. The depth profiles of neutron fluences suggest that the regoliths at both sites were due to incomplete mixing of three different slabs which experienced individual two-stage irradiation before and after deposition of the upper slabs. The variations in REE compositions provide chemical evidence for incompletely vertical mixing of regoliths especially at upper layers of the two sites. The thermal neutron energy index estimated from the combination of Sm and Gd isotopic shifts, defined as εSm/εGd, shows a small variation (0.61-0.64) in the A-16 core except for the surface layer. On the other hand, a large variation in εSm/εGd = 0.67 to 0.83 in the A-17 core may result from complicated history such as two-stage irradiation and incomplete mixing during the gardening processes. Isotopic enrichments of 152Gd and 154Gd correlated with Eu/Gd elemental abundances and neutron fluences were also observed in almost all of 15 samples, showing evidence of neutron-capture from 151Eu and 153Eu, respectively.  相似文献   
35.
U–Pb zircon geochronology of two Permo-Triassic granites (samples OT-52 and OT-272 with ages of 229 ± 8 Ma and 256 ± 2 Ma, respectively) in the Unazuki area, Hida Metamorphic Belt, southwest Japan, revealed the presence of Eoarchean to Paleoproterozoic inheritance. Inheritance is consistent with both samples showing low zircon saturation temperatures for their bulk compositions. In OT-52, dark in CL, low Th/U zircon domains have a mean 207Pb/206Pb age of 1940 ± 17 Ma, which is consistent with an age of 1937 ± 6 Ma for anatexis in the Precambrian Busan gneiss complex in Korea. Eoarchaean inherited zircons with 207Pb/206Pb ages from ca. 3750 to 3550 Ma are common in OT-272 but are few in OT-52, suggesting a source from rocks with affinities to those in the Anshan area in the northeast China part of the North China Craton. On the other hand, a Hida Metamorphic Belt metasedimentary gneiss into which the granites were intruded contains ca. 1840, 1130, 580, 360, 285 and 250 Ma zircons (Sano et al., 2000). These ages suggest that the Unazuki Mesozoic granites did not originate from proximal Hida Metamorphic Complex rocks, but instead from unrelated rocks obscured at depth. The predominance of Eoarchean to Paleoproterozoic age components, and the marked lack of 900–700 Ma components suggest that the source was the (extended?) fringe of the North China Craton, rather than from Yangtze Craton crust. The Mesozoic evolution of Japan and its linkages to northeast Asia are discussed in the context of these results.  相似文献   
36.
Field studies integrated with cathodoluminescence petrography and SHRIMP U–Pb dating of zircons from >150 orthogneisses and metatonalites from the Eoarchaean Itsaq Gneiss Complex (southern West Greenland) shows that only a minority contain ≥3840 Ma zircons, whereas the majority carry only younger ones. Rocks containing ≥3840 Ma zircons vary from very rare single-phase metatonalites to more common complexly banded tonalitic migmatites. The former metatonalites have simple oscillatory-zoned ≥3840 Ma zircon with limited recrystallisation and overgrowth, whereas the more common migmatites have much more complicated zircon populations with both ≥3840 Ma and 3650–3600 Ma oscillatory-zoned zircon, more extensive recrystallisation and widespread complex core-rim multiple growth relationships.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号