首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   302篇
  免费   9篇
  国内免费   3篇
大气科学   42篇
地球物理   86篇
地质学   125篇
海洋学   16篇
天文学   28篇
自然地理   17篇
  2021年   6篇
  2018年   11篇
  2017年   3篇
  2016年   11篇
  2015年   4篇
  2014年   9篇
  2013年   22篇
  2012年   6篇
  2011年   8篇
  2010年   10篇
  2009年   12篇
  2008年   10篇
  2007年   12篇
  2006年   9篇
  2005年   7篇
  2004年   5篇
  2003年   9篇
  2002年   7篇
  2001年   4篇
  2000年   3篇
  1999年   11篇
  1998年   4篇
  1997年   3篇
  1995年   9篇
  1994年   9篇
  1993年   5篇
  1992年   7篇
  1991年   4篇
  1990年   7篇
  1988年   4篇
  1987年   6篇
  1986年   5篇
  1985年   3篇
  1984年   3篇
  1980年   4篇
  1978年   4篇
  1977年   3篇
  1976年   2篇
  1975年   2篇
  1974年   4篇
  1973年   2篇
  1972年   2篇
  1968年   3篇
  1966年   4篇
  1965年   3篇
  1962年   2篇
  1955年   2篇
  1954年   2篇
  1926年   4篇
  1924年   2篇
排序方式: 共有314条查询结果,搜索用时 15 毫秒
161.
A wealth of data on the state of the environment is being created in innumerable programmes world-wide. Optimal use of this data requires that information on its existence is available, that it can be readily accessed and — most important — that the data be compiled and classified in a compatible way. Achieving this is the basic aim of harmonization of environmental measurement. Although great care is generally taken to harmonize data collected within programmes, harmonization between programmes remains a major goal for the future.In 1989 UNEP established an office as a basis for the planned Harmonization of Environmental Measurement Project under the auspices of the Global Environmental Monitoring System (GEMS). The office describes the mission, rationale, and objectives of the project and the concepts underlying the harmonization of information on the environment collected at different levels and in different programmes.  相似文献   
162.
Zusammenfassung Im Westeuropäischen Becken wurden bathymetrische Vermessungen und geomorphologische Untersuchungen zur Unterstützung eines ozeanographischen Meßprogramms (NOAMP) des Deutschen Hydrographischen Instituts durchgeführt. Für das zentrale Arbeitsgebiet wurde mit dem SEA BEAM-System eine sehr exakte Tiefenkarte erstellt. Die Karte der weiteren Umgebung ergab sich aus den NBS-Lotungen während der Profilfahrten des hydrographischen Meßprogramms.Die bathymetrischen Karten zeigen Wassertiefen zwischen 3500 und 4900 m an. Das Relief ist damit deutlich rauher, als es aus bisherigen Vermessungen zu erwarten war. Es herrschen NNE-SSW-streichende Strukturen vor, die parallel zum Mittelatlantischen Rücken verlaufen. Ab und zu werden diese durch breite, E-W-verlaufende Senken geschnitten. Bei diesen Senken handelt es sich vermutlich um derzeit inaktive ozeanische Bruchzonen.Die basaltische Kruste hat im Zentralgebiet ein paläozänes bis eozänes Alter (Magnetanomalie 26 bis 21). Die basaltischen Rücken tragen eine ca. 30 m mächtige Sedimentdecke, die das schroffe Krustenrelief noch nicht geglättet hat. Tiefergelegene Rinnen und Senken besitzen durch Sedimentumlagerung und (nördlich 47° N) durch Turbiditzufuhr aus dem Maury-Channel-System südlich von Island eine mehr als 150 m mächtige Sedimentfüllung.
Bathymetric and physiographic charting in the NOAMP area, West European Basin (17° W to 22° W, 46° N to 49° N)
Summary The Deutsches Hydrographisches Institut (DHI), Hamburg, is carrying out an oceanographic measurement programme in the NE Atlantik (NOAMP) in order to compute the transportation paths of dissolved and particulate substances from the ocean bottom up to surface layers. One of the main tasks, to resolve the movements of the bottom currents, required detailed knowledge of the structure of the ocean floor. Therefore, the oceanographic data collection was accompanied by bathymetric charting and a geophysical site survey (continuous profiling of reflection seismic, gravity, and orientation of magnetism) of the central area of investigation. The mapping of the central NOAMP area was carried out with the SEA BEAM system (RV Polarstern, RV Sonne). NBS soundings, recorded during the hydrographic cruises, were evaluated for a map of the outer vicinity.As the most important result, the mapping revealed a much more sophisticated relief than was expected from known charts. The water depth range between 3500 and 4900 m. A system of ridges and furrows, with a mean crest-to-crest distance of 10 nautical miles, trends parallel to the Mid-Atlantic Ridge (NNE to SSW). This system is cut each 50 nautical miles by broad E-W striking valleys. The ridges climb about 300 to 400 m above the bottom of the furrows. Some peaks sitting on top of the ridges rise up to the shallowest depths of 3500 m.The internal cores of the ridges consist of basaltic ocean crust, as can be seen by the relative increases of the Bouguer gravity. In the central NOAMP area, the age of the crust is Paleocene to Eocene (magnetic anomalies 26 to 21). The E-W striking valley at 47° 30 N is interpreted as a fossil fracture zone, due to the Z-like bending of the magnetic anomalies.The sediment cover is rather thin on elevations (about 30 m). Therefore, the rough microtopography of the basaltic crust is not yet buried. Downslope mass transport of sediment by currnets and submarine slides raised the sediment thickness in the deeper furrows to more than 100 m, and smoothed out the floor. North of 47° N, there is an additional supply of sediment by turbidity currents from the depositional Maury Channel system south of Iceland.

Relevés bathymétriques et physiographiques dans la zone NOAMP, bassin européen Ouest (17° W à 22° W, 46° N à 49° N)
Résumé Le Deutsches Hydrographisches Institut (DHI) de Hamburg, est en train d'exécuter un programme de mesures océanographiques dans l'Atlantique Nord-Est (NOAMP), dans le but de déterminer le cheminement du transport des substances dissoutes et particulaires du fond de l'océan vers les couches de surface. L'une des principales tâches, étant la détermination des déplacements des courants de fond, elle exigeait une connaissance détaillée de la structure du fond de l'océan. En conséquence, la collecte des données océanograhiques fut accompagnée de relevés bathymétriques et d'un levé géophysique sur le site (profils continus de réflexion sismique, gravité, orientation du champ magnétique) de la zone centrale d'investigation. La cartographie de la zone centrale NOAMP a été réalisée à l'aide du sondeur «SEA BEAM» (RV «Polarstern», RV «Sonne»). Les sondages NBS enregistrés au cours des campagnes hydrographiques, étaient évalués pour une carte du voisinage extérieur.Le résultat le plus important, révélé par la cartographie, était un relief beaucoup plus complexe que celui auquel on pouvait s'attendre à la lecture des cartes existantes. La profondeur était comprise entre 3500 et 4900 m. Un système de dorsales et de sillons, avec une distance moyenne de crête à crête de 10 milles marins, s'étire parallèlement à la dorsale médiane de l'Atlantique (du NNE au SSW). Ce système est interrompu tous les 50 milles marins par de larges vallées de direction Est-Ouest. Les dorsales culminent de 300 à 400 m au-dessus du fond des sillons. Quelques pics situés au sommet des dorsales remontent vers les profondeurs les plus faibles qui sont de 3500 m.La structure interne des dorsales consiste en une croûte de basalte océanique comme cela peut être observé par l'augmentation relative de l'anomalie de Bouguer. Dans la partie centrale de la zone NOAMP, l'âge de la croûte s'étale du paléocène à l'éocène (les anomalies magnétiques de 26 à 21). La vallée de direction Est-Ouest située en 47° 30 N, est interprétée comme une zone de fracture fossile, attribuable à la sinuosité, en forme de Z, des anomalies magnétiques.La couverture sédimentaire est plutôt mince sur les hauteurs (de l'ordre de 30 m). C'est pourpuoi, la microtopographie grossière de la croûte basaltique n'est pas encore enfouie. Le transport en masse des sédiments suivant la pente descendante du aux courants et aux glissements sous-marins ont augmenté l'épaisseur du sédiment dans les sillons les plus profonds jusqu'à plus de 100 m et ont «lissé» le fond. Il existe au Nord de 47° N, un apport supplémentaire de sédiments amené par des courants de turbidité provenant du dépôt de Maury Channel au Sud de l'Islande.
  相似文献   
163.
Hypervelocity impact experiments on porous tuff targets were carried out to determine the effect of porosity on deformation mechanisms in the crater's subsurface. Blocks of Weibern Tuff with about 43% porosity were impacted by 2.5 mm and 12.0 mm diameter steel spheres with velocities between 4.8 km s?1 and 5.6 km s?1. The postimpact subsurface damage was quantified with computer tomography as well as with meso‐ and microscale analyses of the bisected crater subsurface. The intensity and style of deformation in mineral clasts and the tuff matrix were mapped and their decay with subsurface depth was determined. Subsurface deformation styles include pore space compaction, clast rotation, as well as microfracture formation. Evaluation of the deformation indicates near‐surface energy coupling at a calculated depth of burial of ~2 projectile diameters (dp), which is in conflict with the crater shape, which displays a deep, central penetration tube. Subsurface damage extends to ~2 dp beneath the crater floor in the experiments with 2.5 mm projectiles and increases to ~3 dp for 12 mm projectiles. Based on overprinting relationships and the geometrical orientation of deformation features, a sequence of subsurface deformation events was derived (1) matrix compaction, (2) intragranular crack formation in clasts, (3) deformation band formation in the compacted matrix, (4) tensile fracturing.  相似文献   
164.
Inter-laboratory and absolute calibrations of rock magnetic parameters are fundamental for grounding a rock magnetic database and for semi-quantitative estimates about the magnetic mineral assemblage of a natural sample. Even a dimensionless ratio, such as anhysteretic susceptibility normalized by magnetic susceptibility (Ka/K) may be biased by improper calibration of one or both of the two instruments used to measure Ka and K. In addition, the intensity of the anhysteretic remanent magnetization (ARM) of a given sample depends on the experimental process by which the remanence is imparted. We report an inter-laboratory calibration of these two key parameters, using two sets of artificial reference samples: a paramagnetic rare earth salt, Gd2O3 and a commercial “pozzolanico” cement containing oxidized magnetite with grain size of less than 0.1 μm according to hysteresis properties. Using Gd2O3 the 10 Kappabridges magnetic susceptibility meters (AGICO KLY-2 or KLY-3 models) tested prove to be cross-calibrated to within 1%. On the other hand, Kappabridges provide a low-field susceptibility value that is ca. 6% lower than the tabulated value for Gd2O3, while average high-field susceptibility values measured on a range of instruments are indistinguishable from the tabulated value. Therefore, we suggest that Kappabridge values should be multiplied by 1.06 to achieve absolute calibration. Bartington Instruments magnetic susceptibility meters with MS2B sensors produce values that are 2-13% lower than Kappabridge values, with a strong dependence on sample centering within the sensor. The Ka/K ratio of ca. 11, originally obtained on discrete cement samples with a 2G Enterprises superconducting rock magnetometer and a KLY-2, is consistent with reference parameters for magnetites of grain size <0.1 μm. On the other hand, Ka values from a 2G Enterprises magnetometer and K values from a Bartington Instruments MS2C loop sensor for u-channel and discrete cement samples, will produce average Ka/K values that are unrealistically high if not properly corrected for the nominal volume detected by the sensors for these instruments. Inter-laboratory measurements of K and Ka for standard paleomagnetic plastic cubes filled with cement indicate remarkable differences in the intensity of the newly produced ARMs (with a standard deviation of ca. 21%), that are significantly larger than the differences observed from the calibration of the different magnetometers employed in each laboratory. Differences in the alternating field decay rate are likely the major source of these variations, but cannot account for all the observed variability. With such large variations in experimental conditions, classical interpretation of a “King plot” of Ka versus K would imply significant differences in the determination of grain size of magnetite particles on the same material.  相似文献   
165.
166.
167.
The temperature drop T between the ocean surface and the 5-cm depth was recorded during GATE, Phase III. With measured values of the total heat flux Q and an assumption about the thickness of the viscous boundary layer of the ocean, the wind-speed dependence of the factor of proportionality between T and Q is determined. This factor depends on the deviations of the thickness of the conductive layer from the thickness of the viscous layer and possibly partially on the wind stress. A further assumption about the thickness of the conductive layer leads to a wind-speed dependence of the ratio between total wind stress and its wave supporting part of it. This ratio increases from a value 1.5 at 1 m s–1 to 9 at 10 m s–1, which is in agreement with existing estimates.  相似文献   
168.
This study provides the first attempt to combine terrestrial (in situ) cosmogenic nuclide (10Be) surface exposure dating with Schmidt hammer relative-age dating for the age estimation of Holocene moraines at Strauchon Glacier, Southern Alps, New Zealand. Numerous Schmidt hammer tests enable a multi-ridged lateral moraine system to be related to three late-Holocene ‘Little Ice Age’-type events. On the basis of cosmogenic 10Be ages, those events are dated to c. 2400, 1700, and 1100 years ago. Linear age-calibration curves are constructed in order to relate Schmidt hammer R-values to cosmogenic 10Be ages. The high explanation yielded reveals the causal link between both data sets. The potential of combining both methods in a ‘’multiproxy approach’ is discussed alongside possible future improvements. Terrestrial cosmogenic nuclide dating delivers absolute ages needed as fixed points for Schmidt hammer age-calibration curves. The Schmidt hammer technique can be used to crosscheck the boulder surfaces chosen for surface exposure dating by terrestrial cosmogenic nuclides. It should, therefore, reduce the number of samples necessary and costs.  相似文献   
169.
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号