首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   683篇
  免费   20篇
  国内免费   7篇
测绘学   45篇
大气科学   84篇
地球物理   95篇
地质学   295篇
海洋学   45篇
天文学   109篇
综合类   4篇
自然地理   33篇
  2021年   13篇
  2020年   10篇
  2018年   28篇
  2017年   26篇
  2016年   25篇
  2015年   22篇
  2014年   30篇
  2013年   39篇
  2012年   24篇
  2011年   35篇
  2010年   18篇
  2009年   43篇
  2008年   22篇
  2007年   28篇
  2006年   29篇
  2005年   19篇
  2004年   16篇
  2003年   23篇
  2002年   24篇
  2001年   19篇
  2000年   12篇
  1999年   13篇
  1998年   20篇
  1997年   13篇
  1996年   4篇
  1995年   5篇
  1994年   15篇
  1993年   4篇
  1992年   4篇
  1991年   7篇
  1990年   3篇
  1989年   3篇
  1988年   6篇
  1987年   13篇
  1986年   6篇
  1985年   8篇
  1984年   8篇
  1983年   5篇
  1982年   4篇
  1981年   4篇
  1979年   3篇
  1978年   6篇
  1977年   3篇
  1975年   3篇
  1974年   6篇
  1973年   8篇
  1972年   4篇
  1971年   5篇
  1969年   3篇
  1966年   2篇
排序方式: 共有710条查询结果,搜索用时 31 毫秒
91.
92.
We present new near-infrared integral field spectroscopy and adaptive optics imaging of the nucleus of NGC 1068. Using the stellar CO absorption features in the H and K bands, we have identified a moderately extincted stellar core centered on the nuclear position and of intrinsic size ~50 pc. We show that this nuclear stellar core is probably 5-16 × 108 years in age and contributes at least 7% of the total nuclear luminosity of ~1 × 1011 L⊙. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
93.
A total of 150 samples were collected at a 10-days' anchor station in the Bornholm basin (55° 31.1′N, 15° 32.1′E) and analyzed for dissolved (< 0.4 μm) and particulate trace metals. For dissolved Mn, large gradients have been found in the vertical distribution with minimum concentrations (< 0.2 μgl?1) in the halocline zone and considerably higher values in the deep waters (up to 50 μgl?1). Ultrafiltration studies indicate that dissolved Mn is probably present as Mn2+ in the oxygenated bottom layer. The primary production process was not evident in the particulate Mn profile; the suspended particulate material (SPM), however, shows a considerable enrichment with depth, apparently due to Mn-oxide precipitation.The distribution of dissolved Fe was rather homogeneous, with average concentrations throughout the water column between 0.86 and 1.1 μgl?1, indicating that the oxidation of Fe2+ ions released from the sediments must already be complete in the very near oxidation boundary layer. Relatively high concentrations of particulate Fe were actually measured in the bottom layer, with the maximum mean of 11.2 μgl?1 at 72 m. Similarly to Mn, the profile of particulate Fe does not reflect the SPM curve of the eutrophic layer. On average, about 70% of the total Fe in surface waters was found to be particulate.The average concentrations of dissolved Zn, Cd and Cu were found to be rather homogeneous in the water column but showed a relatively high variability with time. A simplified model on trace-metal uptake by phytoplankton indicates no significant change in dissolved metal concentrations during the period of investigation. On average, only 1.7% Zn, 3.3% Cd and 9.8% Cu of the total metal concentrations were found in particulate form. SPM analyses showed significant correlations of Zn, Cd and Cu with Fe, indicating that particulate iron is an important carrier for particulate trace metals in Baltic waters.  相似文献   
94.
Glassy orthopyroxene granodiorite-tonalite (named pincinite after type locality) was described from basaltic lapilli tuffs of the Pliocene maar near Pinciná village in the Slovakian part of the Pannonian Basin. Two pincinite types exhibit a qualitatively similar mineral composition (quartz, An20–55 plagioclase, intergranular silicic glass with orthopyroxene and ilmenite, ±K-feldspar), but strongly different redox potential and formation PT conditions. Peraluminous pincinite is reduced (6–7% of total iron as Fe3+ in corundum-normative intergranular dacitic glass) and contains ilmenite with 8–10 mol% Fe2O3 and orthopyroxene dominated by ferrosilite. High-density (up to 0.85 g/cm3) primary CO2 inclusions with minor H2, CH4, H2S, CO and N2 (<2 mol% total) are present in Qtz and Plg. Equilibrium PT conditions inferred from the intergranular Opx–Ilm–Glass assemblage and fluid density correspond to 1,170±50°C, 5.6±0.4 kbar, respectively. Metaluminous pincinite is more oxidised (25–27% of total iron as Fe3+ in diopside-normative intergranular glass of rhyolite–trachyte–dacite composition) and contains Fe2O3-rich ilmenite (17–29 mol%) associated with enstatite. Fluid inclusions are composed of CO2–H2O mixtures with up to 38 mol% H2O. Raman spectroscopy revealed H2S along with dominant CO2 in the carbonic phase. Equilibrium PT parameters for the intergranular Opx–Ilm–Glass assemblage correspond to 740±15°C, 2.8±0.1 kbar, respectively. Reducing gas species (<2 mol% total) in the CO2-inclusions of the peraluminous pincinite resulted from hydrogen diffusion due to fH2 gradient imposed during decrease of redox potential from the log fO2 values near QFM during Qtz + Plg growth, to QFM-2 incidental to the superimposed Opx + Ilm assemblage in the intergranular melt. The decrease in oxygen fugacity was recorded also in the metaluminous pincinite, where log fO2 values changed from ~QFM + 2.6 to QFM + 0.4, but hydrogen diffusion did not occur. Absence of OH-bearing minerals, major and trace element abundances (e.g. REE 300–320, Nb 55–57, Th 4–31, Zr 240–300 ppm, FeOtot/MgO up to 11), and Sr–O isotope ratios in the pincinites are diagnostic of high-temperature anorogenic magmas originated by dehydration melting of biotite in quartz-feldspathoid crust (87Sr/86Sr>0.705–0.706, 18O>9 V-SMOW) around alkali basalt reservoir in depths between 17 and 20 km, and around late stage derivatives of the basalt fractionation, intruding the crust up to depths of 10–11 km. Low water activity in the pincinite parental melt was caused by CO2-flux from the Tertiary basaltic reservoirs and intrusions. The anatexis leads to generation of a melt-depleted granulitic crust beneath the Pannonian Basin, and the pincinites are interpreted as equivalents of igneous charnockites and enderbites quenched at temperatures above solidus and unaffected by sub-solidus re-equilibration and metamorphic overprint.  相似文献   
95.
At four industrial regions, heavy metal concentrations and calculated depositions were investigated by sampling and analysing mosses. In each region, a special spatial pattern of heavy metal concentrations was detected, reflecting the industrial processes. Metals most likely originating from the industrial sites showed an exponential decrease of concentrations and depositions with increasing distance from the pollution source. The exponential deposition pattern was in some cases modified by a series of natural factors, like the main direction of winds or orographic conditions. The distance at which deposition dropped to background values was up to 20 km. Beside the fact that the moss-metho is a useful tool for deposition measurement in the vicinity of stationary sources, some improvements for using this method are discussed, highlighting factors such as a proper calculation of deposition from concentrations, or the better knowledge of correlations between heavy metal concentrations in mosses and effects on human health.  相似文献   
96.
The Turiec Basin (TB) of Slovakia formed in the Miocene when the West Carpathians escaped from the Alpine region. The 1,250-m-thick sedimentary Neogene fill of the basin preserved fossil leaves as well as endemic bivalves, gastropods, and ostracodes. The paleolimnologic changes recorded in the TB infill were derived from the most abundant fossils, the ostracodes. Five contemporaneous ostracode assemblages within the Late Miocene lacustrine system were distinguished through statistical analysis. These assemblages have low species similarity, between 2.1 and 24.1%, and are recognized by shape differences among the Candoninae. The ostracode assemblages, mollusca fossils, and Sr-isotope ratios suggest a low-salinity environment at the beginning of the Late Miocene, during a brief connection with the Central Paratethys. When the connection ceased, the basin became an isolated freshwater lake, with five zones differentiated ecologically and bathymetrically using the ostracode assemblages. Taxonomic comparison of the faunas of the TB and the freshwater to brackish Neogene basins of Europe demonstrates the endemic character of the TB ostracode fauna. The biologic characteristics of the ostracode families, along with the geology of the lake basin, suggest that the longevity of the Late Miocene lake probably exceeded 1 Ma.  相似文献   
97.
Carbon storage and catchment hydrology are influenced both by land use changes and climatic changes, but there are few studies addressing both responses under both driving forces. We investigated the relative importance of climate change vs. land use change for four Alpine catchments using the LPJ-GUESS model. Two scenarios of grassland management were calibrated based on the more detailed model PROGRASS. The simulations until 2100 show that only reforestation could lead to an increase of carbon storage under climatic change, whereby a cessation of carbon accumulation occurred in all catchments after 2050. The initial increase in carbon storage was attributable mainly to forest re-growth on abandoned land, whereas the stagnation and decline in the second half of the century was mainly driven by climate change. If land was used more intensively, i.e. as grassland, litter input to the soil decreased due to harvesting, resulting in a decline of soil carbon storage (1.2−2.9 kg C m–2) that was larger than the climate-induced change (0.8–1.4 kg C m−2). Land use change influenced transpiration both directly and in interaction with climate change. The response of forested catchments diverged with climatic change (11–40 mm increase in AET), reflecting the differences in forest age, topography and water holding capacity within and between catchments. For grass-dominated catchments, however, transpiration responded in a similar manner to climate change (light management: 23–32 mm AET decrease, heavy management: 29–44 mm AET decrease), likely because grassroots are concentrated in the uppermost soil layers. Both the water and the carbon cycle were more strongly influenced by land use compared to climatic changes, as land use had not only a direct effect on carbon storage and transpiration, but also an indirect effect by modifying the climate change response of transpiration and carbon flux in the catchments. For the carbon cycle, climate change led to a cessation of the catchment response (sink/source strength is limited), whereas for the water cycle, the effect of land use change remains evident throughout the simulation period (changes in evapotranspiration do not attenuate). Thus we conclude that management will have a large potential to influence the carbon and water cycle, which needs to be considered in management planning as well as in climate and hydrological modelling.  相似文献   
98.
Diffusion couple experiments with wet half (up to 4.6 wt%) and dry half were carried out at 789–1,516 K and 0.47–1.42 GPa to investigate water diffusion in a peralkaline rhyolitic melt with major oxide concentrations matching Mount Changbai rhyolite. Combining data from this work and a related study, total water diffusivity in peralkaline rhyolitic melt can be expressed as:
$ D_{{{\text{H}}_{ 2} {\text{O}}_{\text{t}} }} = D_{{{\text{H}}_{ 2} {\text{O}}_{\text{m}} }} \left( {1 - \frac{0.5 - X}{{\sqrt {[4\exp (3110/T - 1.876) - 1](X - X^{2} ) + 0.25} }}} \right), $
$ {\text{with}}\;D_{{{\text{H}}_{ 2} {\text{O}}_{\text{m}} }} = \exp \left[ { - 1 2. 7 8 9- \frac{13939}{T} - 1229.6\frac{P}{T} + ( - 27.867 + \frac{60559}{T})X} \right], $
where D is in m2 s?1, T is the temperature in K, P is the pressure in GPa, and X is the mole fraction of water and calculated as = (C/18.015)/(C/18.015 + (100 ? C)/33.14), where C is water content in wt%. We recommend this equation in modeling bubble growth and volcanic eruption dynamics in peralkaline rhyolitic eruptions, such as the ~1,000-ad eruption of Mount Changbai in North East China. Water diffusivities in peralkaline and metaluminous rhyolitic melts are comparable within a factor of 2, in contrast with the 1.0–2.6 orders of magnitude difference in viscosities. The decoupling of diffusivity of neutral molecular species from melt viscosity, i.e., the deviation from the inversely proportional relationship predicted by the Stokes–Einstein equation, might be attributed to the small size of H2O molecules. With distinct viscosities but similar diffusivity, bubble growth controlled by diffusion in peralkaline and metaluminous rhyolitic melts follows similar parabolic curves. However, at low confining pressure or low water content, viscosity plays a larger role and bubble growth rate in peralkaline rhyolitic melt is much faster than that in metaluminous rhyolite.
  相似文献   
99.
H2O diffusion in dacitic melt was investigated at 0.48-0.95 GPa and 786-893 K in a piston-cylinder apparatus. The diffusion couple design was used, in which a nominally dry dacitic glass makes one half and is juxtaposed with a hydrous dacitic glass containing up to ∼8 wt.% total water (H2Ot). H2O concentration profiles were measured on quenched glasses with infrared microspectroscopy. The H2O diffusivity in dacite increases rapidly with water content under experimental conditions, similar to previous measurements at the same temperature but at pressure <0.15 GPa. However, compared with the low-pressure data, H2O diffusion at high pressure is systematically slower. H2O diffusion profiles in dacite can be modeled by assuming molecular H2O (H2Om) is the diffusing species. Total H2O diffusivity DH2Ot within 786-1798 K, 0-1 GPa, and 0-8 wt.% H2Ot can be expressed as: where DH2Ot is in m2/s, T is temperature in K, P is pressure in GPa, K = exp(1.49 − 2634/T) is the equilibrium constant of speciation reaction (H2Om+O?2OH) in the melt, X = C/18.015/[C/18.015 + (100 − C)/33.82], C is wt.% of H2Ot, and 18.015 and 33.82 g/mol correspond to the molar masses of H2O and anhydrous dacite on a single oxygen basis. Compared to H2O diffusion in rhyolite, diffusivity in dacite is lower at intermediate temperatures but higher at superliquidus temperatures. This general H2O diffusivity expression can be applied to a broad range of geological conditions, including both magma chamber processes and volcanic eruption dynamics from conduit to the surface.  相似文献   
100.
Viscosity of silicate melts is a critical property for understanding volcanic and igneous processes in the Earth. We investigate the pressure effect on the viscosity of rhyolitic melts using two methods: indirect viscosity inference from hydrous species reaction in melts using a piston cylinder at pressures up to 2.8 GPa and direct viscosity measurement by parallel-plate creep viscometer in an internally-heated pressure vessel at pressures up to 0.4 GPa. Comparison of viscosities of a rhyolitic melt with 0.8 wt% water at 0.4 GPa shows that both methods give consistent results. In the indirect method, viscosities of hydrous rhyolitic melts were inferred based on the kinetics of hydrous species reaction in the melt upon cooling (i.e., the equivalence of rheologically defined glass transition temperature and chemically defined apparent equilibrium temperature). The cooling experiments were carried out in a piston-cylinder apparatus using hydrous rhyolitic samples with 0.8-4 wt% water. Cooling rates of the kinetic experiments varied from 0.1 K/s to 100 K/s; hence the range of viscosity inferred from this method covers 3 orders of magnitude. The data from this method show that viscosity increases with increasing pressure from 1 GPa to 3 GPa for hydrous rhyolitic melts with water content ?0.8 wt% in the high viscosity range. We also measured viscosity of rhyolitic melt with 0.13 wt% water using the parallel-plate viscometer at pressures 0.2 and 0.4 GPa in an internally-heated pressure vessel. The data show that viscosity of rhyolitic melt with 0.13 wt% water decreases with increasing pressure. Combining our new data with literature data, we develop a viscosity model of rhyolitic melts as a function of temperature, pressure and water content.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号