首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   0篇
  国内免费   5篇
地质学   6篇
天文学   35篇
  2014年   1篇
  2012年   2篇
  2010年   4篇
  2007年   1篇
  2006年   6篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   3篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1989年   2篇
  1979年   2篇
  1977年   1篇
  1976年   2篇
  1973年   1篇
  1971年   1篇
  1968年   2篇
排序方式: 共有41条查询结果,搜索用时 125 毫秒
31.
In this paper, we address the issue of finding velocity fields which conserve magnetic flux or at least magnetic fieldline connectivity. We start from the basic principles of flux and line conservation and present and discuss the criterion, given by Newcomb (1958), Stern (1966), and Vasyliunas (1972). In addition, we find a new formulation of the line-conserving velocity field by solving the system of partial differential equations which corresponds to Newcomb's criterion for line conservation. This velocity field is given by a correlation between the non-idealness, described by a generalized form of the Ohm's law and a general transporting velocity, which is fieldline conserving. Our considerations give additional insights into the discussion on violations of the frozen-in field concept which started recently with the papers by Baranov and Fahr (2003a,b). These authors analyzed a generalized form of Ohm's law, which is valid for the heliosphere and claimed that the transport velocity for the magnetic flux may be different from the plasma velocity. We can show that the non-idealness given in the paper by Baranov and Fahr could not change the magnetic topology and can therefore not be responsible for magnetic reconnection. But we found that it is in general not clear if the flux-conserving velocity field is identical to the plasma flow or to any species velocity field.  相似文献   
32.
We study the physics of a multi-ion MHD shock, i.e. an MHD shock feature that forms when a supersonic flow of mixed ion populations is forced to adapt itself to a pressure obstacle further downstream. We shall describe this situation by using a multi-fluid approach for a mixture of ion populations with different specific masses and charges per ion species. First we calculate the effective electric potential that forces the plasma bulk to decelerate to the downstream bulk flow velocity which also then defines that system into which the downstream magnetic field is frozen-in. Then we calculate the unavoidable ion-specific overshoot velocities and gain from them, requesting energy conservation, the ion-specific contributions to the downstream thermal energies and pressures. The aim thereby is to find the solution for the MHD status of the downstream flow of the plasma mixture, specifically for a proton-electron plasma. We derive an implicit equation for the effective compression ratio and explicit relations for the different, downstream ion and electron temperatures as function of the multi-fluid compression ratio s. The resulting actual multi-fluid compression ratio s eff is found by adding up all the partial downstream pressures and comparing it with the upstream ram pressure. As we can show, the electron pressure is the dominant contribution to the total downstream plasma pressure.  相似文献   
33.
It has been hypothesized for quite some time that interplanetary pick-up ions due to energization taking place in the region close to the solar wind termination shock, at some fraction and as an outcome of a complicated chain of processes, eventually are converted into species of the anomalous cosmic-ray particles. For the actual conversion efficiency it is of great importance to know the energy distribution of these pick-up ions upon their arrival at the shock. It turns out that pre-acceleration of these ions during their passage through the heliosphere shall substantially increase their chances to become reflected at the shock into the upstream direction which is a prerequisite for a further climb-up in energy by virtue of Fermi-1 acceleration processes. In this paper we start out from stochastically pre-accelerated pick-up ions and investigate their behaviour at the shock. With the use of adiabatic approaches in the de Hoffman-Teller frame of the shock, we calculate the energy distribution function of the reflected part of pick-up ions. From the calculated distribution functions it turns out that the reflected ions in the average suffer an energy increase by about a factor of 10, still not enough to let them move off the shock by spatial diffusion in the upstream direction. Thus, since converted back into the shock, they can undergo repeated reflections and energy gains till the diffusion-convection limit is reached. As we show in addition, the reflection probability for pick-up ions is about a factor of 10 higher than expected from the present literature and strongly varies with the off-axis angle, pointing to the fact that the termination shock represents a surface with a three-dimensionally varying source strength for the production of anomalous cosmic rays. The ACR source pattern is also expected to vary during the solar cycle and the relevant injection energies are expected to be larger by factors of 10 to 100 than the canonically adopted 1 keV nucl–1.Institute for Problems of Mechanics of the Russian Academy of Sciences, Prospect Vernadskogo 101, 117526, Moscow, Russia.  相似文献   
34.
We study the temperature of electrons advected with the solar wind to large solar distances far beyond 1 AU. Almost nothing is known about the thermodynamics of these electrons from in-situ plasma observations at these distances, and usually it is tacitly assumed that electrons, due to adiabatic behaviour and vanishing heat conduction, rapidly cool off to very low temperatures at larger distances. In this article we show, however, that electrons on their way to large distances undergo non-adiabatic interactions with travelling shocks and solar-wind bulk-velocity jumps and thereby are appreciably heated. Examining this heating process on an average statistical basis, we find that solar-wind electrons first cool down to a temperature minimum, which depending on the occurrence frequency of bulk velocity jumps is located between 3 and 6 AU, but beyond this the lowest electron temperature again starts to increase with increasing solar distance, finally achieving temperatures of about 7×104 K to 7×105 K at the location of the termination shock. Hence these electrons are unexpectedly shown to play an important dynamical role in structuring this shock and in determining the downstream plasma properties.  相似文献   
35.
Interplanetary pick-up ions originate from ionizations of neutral interstellar atoms in the heliosphere. Over the past periods it was generally expected that after pick-up by the frozen-in solar wind magnetic fields these ions quickly isotropize in velocity space by strong pitch- angle scattering, they do, however, not assimilate to the ambient solar wind ions. Meanwhile careful investigations of pick-up ion data obtained with the plasma analyzers on AMPTE and ULYSSES could clearly reveal that, especially at periods of flow-aligned fields, noticeably anisotropic distributions must prevail. To better understand the evolutionary tracks of pick-up ions in interplanetary phase-space we carried out an injection study which takes into account all relevant convection and diffusion processes, i.e. describing pitch angle scattering, adiabatic cooling, drifts and energy diffusion. As demonstrated here particles injected at 1 AU establish a distribution function with substantial anisotropies up to distances beyond 6 AU. Only under the action of fairly strong isotropic turbulence levels a trend towards isotropy can be recognized. The bulk velocity of the injected pick-up ions turns out to be remarkably smaller than the solar wind velocity. It also is obvious that pick-ups are strongly spread out from that solar wind plasma parcel into which they were originally implanted. As one consequence it must be concluded that the derivation of interstellar He gas parameters, using He pick-up ion flux data, require appreciable caution. Due to anisotropic spatial diffusion the location of the LISM helium cone axis, i.e. the LISM wind vector, and the LISM helium temperature are hidden in the associated He+pick-up ion flux patterns. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
36.
北秦岭松树沟橄榄岩与铬铁矿矿床的成因关系   总被引:1,自引:1,他引:1  
李犇  朱赖民  弓虎军  郭波  杨涛  王飞  王伟  徐奥 《岩石学报》2010,26(5):1487-1502
松树沟橄榄岩体是秦岭造山带中规模最大的赋存铬铁矿床的超基性岩体。松树沟橄榄岩主要由细粒橄榄岩质糜棱岩和中粗粒橄榄岩组成。本文通过对松树沟橄榄岩的岩相学、主微量、稀土元素地球化学的系统研究,认为松树沟细粒方辉橄榄岩为洋脊扩张过程中地幔岩减压-近分离熔融产生的残留体,细粒纯橄岩主要由地幔橄榄岩熔融残留橄榄石、消耗辉石的减压熔融反应:aCpx+bOpx+cSpl=dOl+1Melt生成的橄榄石和少量的地幔方辉橄榄岩残留体组成,但均受到了后期渗滤熔体的再富集作用;中粗粒纯橄岩和方辉橄榄岩主要为上述反应产生的渗滤熔体被圈闭在迁移通道或减压扩容带内在热边界层(TBL)通过反应:MeltA=Ol+MeltB冷凝结晶而成,属堆晶橄榄岩。Pb-Sr-Nd同位素地球化学的证据显示,松树沟橄榄岩与基性岩具有共同的地幔源区,二者同为松树沟蛇绿岩的重要组成部分。通过矿床地质特征及铬铁矿电子探针测试研究,认为松树沟铬铁矿床是产于中粗粒堆晶纯橄岩中的层状铬铁矿床,形成于格林威尔期松树沟洋盆的扩张过程中,是中粗粒纯橄岩在热边界层(TBL)的冷凝结晶过程中岩浆分异作用的产物。  相似文献   
37.
It is well known that the neutral component of the local interstellar medium can effectively pass through the plasma interface ahead of the solar system and can penetrate deeply into the inner heliosphere. Here we present a newly-developed theoretical approach to describe the distribution function of LISM neutral hydrogen in the heliosphere, also taking into account time-dependent solar and interstellar boundary conditions. For this purpose we start from a Boltzmann-Vlasov equation, Fourier-transformed with respect to space and time coordinates, in connection with correspondingly transformed solar radiation forces and ionization rates, and then arrive at semi-analytic solutions for the transformed hydrogen velocity distribution function. As interstellar boundary conditions we allow for very general, non-Maxwellian and time-dependent distribution functions to account for the case that some LISM turbulence patterns or nonlinear wave-like shock structures pass over the solar system. We consider this theoretical approach to be an ideal instrument for the synoptic interpretation of huge data samples on interplanetary Ly- resonance glow intensities registered from different celestial directions over extended periods of time. In addition we feel that the theoretical approach presented here, when applied to interplanetary resonance glow data, may permit the detection of genuine fluctuations in the local interstellar medium.  相似文献   
38.
In the following paper we argue that each wind-driving star in relative motion with respect to the ambient interstellar medium experiences a force exerted on its central wind-generating body. The exact magnitude of this force depends on the actual geometry of the counterflow configuration of stellar and interstellar winds for a particular kinematic situation which is especially sensitive to whether the interstellar flow is subsonic or supersonic. It will, however, be demonstrated here that this force is of an accelerating nature, i.e., it operates like a rocket-motor, as long as the peculiar motion of the wind-driving star with respect to the ambient interstellar medium remains subsonic.Here we use a specific analytical model to describe theoretically the specific counterflow configuration for the case of the solar system in a subsonic peculiar motion with respect to the local interstellar medium assuming irrotational and incompressible flows. We can work out a quantitative number for the accelerating force governing the Sun's motion at present. The net reaction force exerted on the solar body is then mediated by the asymmetric boundary conditions to which the distant solar wind field has to adapt.Next we study the indirect action of such a force on orbiting Keplerian objects like planets, planetesimals and comets. Since this force only influences the central solar body, but not the planets themselves, the problem is different from the treatment of a constant perturbation force perturbing the Keplerian orbits. We present a perturbation analysis treating the action of a corresponding position-dependent perturbation force resulting in secular changes of the orbital elements of Keplerian objects. It is found that changes are accumulating more rapidly in time the closer to the sun the orbiting bodies are. Main axis and perihelion distances are systematically increasing. Especially pronounced are changes in the perihelion position angle of the objects. For solar wind mass losses larger than the Sun's present value by a factor of 1000 (T-Tauri phase of the Sun,) the migration periods calculated for the planet Mercury are of the same order of magnitude as that for corresponding general relativistic migration.  相似文献   
39.
In an earlier research the employment of a radiation transport model with angle-dependent partial frequency redistribution, self-absorption by interplanetary hydrogen, realistic solar HLyαemission profile, and a time dependent `hot' hydrogen model to analyze 5 interplanetary HLyα glow spectra obtained with theHubble–Space–Telescope–GHRS spectrometer, has not resulted in unequivocal determination of a set of thermodynamical parameters of the interstellar hydrogen The residual discrepancies between the model and the data concern the observations performed within an interval of 1 year close to the solar minimum from very similar lines of sight. In this paper we investigate by calculating interplanetary HLyα lines with the use of a one hydrogen distribution and several solar HLyα line profiles whether this residual may be caused by possible variations in time of the shape of the solar HLyα emission line profile which cause variable illuminations of the interplanetary gas. These variations of illuminations cause variations in Doppler shift of the resonant interplanetary HLyα line that can amount to ≃ 4 km s-1in the line peak. Consequently we conclude that without adequate knowledge of the solar HLyα emission line profile during spectral observations of the interplanetary hydrogen gas it is impossible to obtain an agreement between models and observations better than by this value. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
40.
Neutral interstellar matter entering the solar system has been considered in respect to its influences on the upper atmosphere. Calculations show that in consequence of the focussing effect due to the sun's gravitational field the incoming neutral hydrogen and helium under special, but possible conditions will represent a semi-annually varying density along the earth's orbit. The particle fluxes amounting at least to some 107 cm?2 sec?1, which are connected with these density-profiles and reach the upper atmosphere, show annual periodicities and so will cause annual variations of the densities of the light, atmospheric gas constituents. Especially it is to be expected, that so produced density variations of atmospheric hydrogen are important. Temperature increases caused by the energy flux of interstellar particles should in general only amount to a few thousandths of the CIRA-temperatures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号