首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30933篇
  免费   462篇
  国内免费   381篇
测绘学   791篇
大气科学   2817篇
地球物理   6354篇
地质学   10767篇
海洋学   2378篇
天文学   6754篇
综合类   70篇
自然地理   1845篇
  2020年   179篇
  2019年   196篇
  2018年   491篇
  2017年   481篇
  2016年   689篇
  2015年   448篇
  2014年   675篇
  2013年   1407篇
  2012年   739篇
  2011年   1026篇
  2010年   873篇
  2009年   1241篇
  2008年   1058篇
  2007年   941篇
  2006年   1043篇
  2005年   875篇
  2004年   848篇
  2003年   869篇
  2002年   867篇
  2001年   746篇
  2000年   788篇
  1999年   660篇
  1998年   629篇
  1997年   666篇
  1996年   575篇
  1995年   541篇
  1994年   482篇
  1993年   427篇
  1992年   420篇
  1991年   416篇
  1990年   422篇
  1989年   398篇
  1988年   381篇
  1987年   466篇
  1986年   436篇
  1985年   464篇
  1984年   558篇
  1983年   560篇
  1982年   501篇
  1981年   490篇
  1980年   447篇
  1979年   433篇
  1978年   447篇
  1977年   394篇
  1976年   355篇
  1975年   355篇
  1974年   405篇
  1973年   389篇
  1972年   245篇
  1971年   224篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
The moment at which in a two-ship encounter a collision avoidance manoeuvre should be initiated in order to achieve a specific distance at the closest point of approach has been calculated. The calculations were based on the kinematics of encounter and simplified equations of motion. Mathematical equations which relate the maneouvring distance, the turning direction and the extent of course change for any desired passing distance and any given turning rate are determined. Knowledge of these quantities is essential for the safe conduct of the ship with automatic, computer-assisted navigation as well as with ordinary, manual navigation if the navigator no longer contents himself with estimates but wishes to know precisely in advance the outcome of any specific manoeuvre he chooses.  相似文献   
972.
H. B  kiiz  H. M. Ng 《Marine Geodesy》2005,28(3):209-217
Tide gauges distributed all over the world provide valuable information for monitoring mean sea level changes. The statistical models used in estimating sea level change from the tide gauge data assume implicitly that the random model components are stationary in variance. We show that for a large number of global tide gauge data this is not the case for the seasonal part using a variate-differencing algorithm. This finding is important for assessing the reliability of the present estimates of mean sea level changes because nonstationarity of the data may have marked impact on the sea level rate estimates, especially, for the data from short records.  相似文献   
973.
Dynamics of the submarine permafrost regime, including distribution, thickness, and temporal evolution, was modeled for the Laptev and East Siberian Sea shelf zones. This work included simulation of the permafrost-related gas hydrate stability zone (GHSZ). Simulations were compared with field observations. Model sensitivity runs were performed using different boundary conditions, including a variety of geological conditions as well as two distinct geothermal heat flows (45 and 70 mW/m2). The heat flows used are typical for the coastal lowlands of the Laptev Sea and East Siberian Sea. Use of two different geological deposits, that is, unconsolidated Cainozoic strata and solid bedrock, resulted in the significantly different magnitudes of permafrost thickness, a result of their different physical and thermal properties. Both parameters, the thickness of the submarine permafrost on the shelf and the related development of the GHSZ, were simulated for the last four glacial-eustatic cycles (400,000 years). The results show that the most recently formed permafrost is continuous to the 60-m isobath; at the greater depths of the outer part of the shelf it changes to discontinuous and patchy permafrost. However, model results suggest that the entire Arctic shelf is underlain by relic permafrost in a state stable enough for gas hydrates. Permafrost, as well as the GHSZ, is currently storing probable significant greenhouse gas sources, especially methane that has formed by the decomposition of gas hydrates at greater depth. During climate cooling and associated marine regression, permafrost aggradation takes place due to the low temperatures and the direct exposure of the shelf to the atmosphere. Permafrost degradation takes place during climate warming and marine transgression. However, the temperature of transgressing seawater in contact with the former terrestrial permafrost landscape remains below zero, ranging from –0.5 to –1.8°C, meaning permafrost degradation does not immediately occur. The submerged permafrost degrades slowly, undergoing a transformation in form from ice bonded terrestrial permafrost to ice bearing submarine permafrost that does not possess a temperature gradient. Finally the thickness of ice bearing permafrost decreases from its lower boundary due to the geothermal heat flow. The modeling indicated several other features. There exists a time lag between extreme states in climatic forcing and associated extreme states of permafrost thickness. For example, permafrost continued to degrade for up to 10,000 years following a temperature decline had begun after a climate optimum. Another result showed that the dynamic of permafrost thickness and the variation of the GHSZ are similar but not identical. For example, it can be shown that in recent time permafrost degradation has taken place at the outer part of the shelf whereas the GHSZ is stable or even thickening.  相似文献   
974.
Lock-release gravity currents with a viscous self-similar regime are simulated by use of the renormalization group(RNG) k - ε model for Reynolds-stress closure. Besides the turbulent regime with initially a slumping phase of a conslant current front speed and later an inviseid self-similar phase of front speed decreasing as t^-1/3(where t is the time measured from release), the viseous self-similar regime is satisfactorily reproduced with front speed decreasing as t^-4/5,consistent with well known experimental observations.  相似文献   
975.
The radiometers on board the satellites ERS-1, TOPEX/Poseidon, ERS-2, GFO, Jason-1, and Envisat measure brightness temperatures at two or three different frequencies to determine the total columnal water vapor content and wet tropospheric path delay, a major correction to the altimeter range measurements. In order to asses the long-term stability of the path delay, the radiometers are calibrated against vicarious cold and hot references, against each other, and against several atmospheric models. Four of these radiometers exhibit significant drifts in at least one of the channels, resulting in yet unmodeled errors in path delay of up to 1 mm/year, thus limiting the accuracy at which global sea level rise can be inferred from the altimeter range measurements.  相似文献   
976.
In the southeastern Yellow Sea, active seepage of hydrocarbon gases has been observed by high-resolution (3.5 kHz) seismic profiling both in 1987 and 2001, occurring through a large number of plumes from the topmost pre-Holocene sedimentary layer. It is strong enough to compensate for current speed, extending vertically up to the sea surface. The gas seepage often appears to be explosive to form craters and diapirs, although pockmarks are rare due to the redistribution of mobile palimpsest sands. In core-top seawater and sediments, the gases are characterized by high amounts of C2, homogenous 13C1 values and a large difference (19.7 on average) between 13C1 (–55.2 to –53.6 PDB) and 13C2 (–36.8 to –32.5 PDB) values. The gases are considered to be generated with a smaller amount of C1 at the early thermal cracking stage of labile source materials, after which the C2 gas is enriched in 13C by diffusion or biological alternation at the generation or accumulation site. The homogenous 13C1 values may be one of the geochemical characteristics of gases acquired at depth which are less altered in the case of rapid diffusive gas migration to the seafloor.  相似文献   
977.
In 2001 and 2002, Australia acquired an integrated geophysical data set over the deep-water continental margin of East Antarctica from west of Enderby Land to offshore from Prydz Bay. The data include approximately 7700 km of high-quality, deep-seismic data with coincident gravity, magnetic and bathymetry data, and 37 non-reversed refraction stations using expendable sonobuoys. Integration of these data with similar quality data recorded by Japan in 1999 allows a new regional interpretation of this sector of the Antarctic margin. This part of the Antarctic continental margin formed during the breakup of the eastern margin of India and East Antarctica, which culminated with the onset of seafloor spreading in the Valanginian. The geology of the Antarctic margin and the adjacent oceanic crust can be divided into distinct east and west sectors by an interpreted crustal boundary at approximately 58° E. Across this boundary, the continent–ocean boundary (COB), defined as the inboard edge of unequivocal oceanic crust, steps outboard from west to east by about 100 km. Structure in the sector west of 58° E is largely controlled by the mixed rift-transform setting. The edge of the onshore Archaean–Proterozoic Napier Complex is downfaulted oceanwards near the shelf edge by at least 6 km and these rocks are interpreted to underlie a rift basin beneath the continental slope. The thickness of rift and pre-rift rocks cannot be accurately determined with the available data, but they appear to be relatively thin. The margin is overlain by a blanket of post-rift sedimentary rocks that are up to 6 km thick beneath the lower continental slope. The COB in this sector is interpreted from the seismic reflection data and potential field modelling to coincide with the base of a basement depression at 8.0–8.5 s two-way time, approximately 170 km oceanwards of the shelf-edge bounding fault system. Oceanic crust in this sector is highly variable in character, from rugged with a relief of more than 1 km over distances of 10–20 km, to rugose with low-amplitude relief set on a long-wavelength undulating basement. The crustal velocity profile appears unusual, with velocities of 7.6–7.95 km s−1 being recorded at several stations at a depth that gives a thickness of crust of only 4 km. If these velocities are from mantle, then the thin crust may be due to the presence of fracture zones. Alternatively, the velocities may be coming from a lower crust that has been heavily altered by the intrusion of mantle rocks. The sector east of 58° E has formed in a normal rifted margin setting, with complexities in the east from the underlying structure of the N–S trending Palaeozoic Lambert Graben. The Napier Complex is downfaulted to depths of 8–10 km beneath the upper continental slope, and the margin rift basin is more than 300 km wide. As in the western sector, the rift-stage rocks are probably relatively thin. This part of the margin is blanketed by post-rift sediments that are up to about 8 km thick. The interpreted COB in the eastern sector is the most prominent boundary in deep water, and typically coincides with a prominent oceanwards step-up in the basement level of up to 1 km. As in the west, the interpretation of this boundary is supported by potential field modelling. The oceanic crust adjacent to the COB in this sector has a highly distinctive character, commonly with (1) a smooth upper surface underlain by short, seaward-dipping flows; (2) a transparent upper crustal layer; (3) a lower crust dominated by dipping high-amplitude reflections that probably reflect intruded or altered shears; (4) a strong reflection Moho, confirmed by seismic refraction modelling; and (5) prominent landward-dipping upper mantle reflections on several adjacent lines. A similar style of oceanic crust is also found in contemporaneous ocean basins that developed between Greater India and Australia–Antarctica west of Bruce Rise on the Antarctic margin, and along the Cuvier margin of northwest Australia.  相似文献   
978.
979.
A review is made of circulation and currents in the southwestern East/Japan Sea (the Ulleung Basin), and the Korea/Tsushima Strait which is a unique conduit for surface inflow into the Ulleung Basin. The review particularly concentrates on describing some preliminary results from recent extensive measurements made after 1996. Mean flow patterns are different in the upstream and downstream regions of the Korea/Tsushima Strait. A high velocity core occurs in the mid-section in the upstream region, and splits into two cores hugging the coasts of Korea and Japan, the downstream region, after passing around Tsushima Island located in the middle of the strait. Four-year mean transport into the East/Japan Sea through the Korea/Tsushima Strait based on submarine cable data calibrated by direct observations is 2.4 Sv (1 Sv = 106 m3 s−1). A wide range of variability occurs for the subtidal transport variation from subinertial (2–10 days) to interannual scales. While the subinertial variability is shown to arise from the atmospheric pressure disturbances, the longer period variation has been poorly understood.Mean upper circulation of the Ulleung Basin is characterized by the northward flowing East Korean Warm Current along the east coast of Korea and its meander eastward after the separation from the coast, the Offshore Branch along the coast of Japan, and the anticyclonic Ulleung Warm Eddy that forms from a meander of the East Korean Warm Current. Continuous acoustic travel-time measurements between June 1999 and June 2001 suggest five quasi-stable upper circulation patterns that persist for about 3–5 months with transitions between successive patterns occurring in a few months or days. Disappearance of the East Korean Warm Current is triggered by merging the Dok Cold Eddy, originating from the pinching-off of the meander trough, with the coastal cold water carried Southward by the North Korean Cold Current. The Ulleung Warm Eddy persisted for about 20 months in the middle of the Ulleung Basin with changes in its position and spatial scale associated with strengthening and weakening of the transport through the Korea/Tsushima Strait. The variability of upper circulation is partly related to the transport variation through the Korea/Tsushima Strait. Movements of the coastal cold water and the instability of the polar front also appear to be important factors affecting the variability.Deep circulation in the Ulleung Basin is primarily cyclonic and commonly consists of one or more cyclonic cells, and an anticyclonic cell centered near Ulleung Island. The cyclonic circulation is conjectured to be driven by a net inflow through the Ulleung Interplain Gap, which serves as a conduit for the exchange of deep waters between the Japan Basin in the northern East Sea and the Ulleung Basin. Deep currents are characterized by a short correlation scale and the predominance of mesoscale variability with periods of 20–40 days. Seasonality of deep currents is indistinct, and the coupling of upper and deep circulation has not been clarified yet.  相似文献   
980.
In an attempt to learn more about the cytochrome P450 (CYP) system of mussels, we used protein databases and alignment software to extract highly conserved CYP sequences. From these alignments synthetic peptides were produced and used for rabbit immunisation, which yielded polyclonal antibodies against the CYP families 2 and 4. The antibodies were evaluated with Western Blot and ELISA assays, using digestive gland microsomal samples from the mussel Mytilus edulis. Western Blots revealed immunoreactions for both antibodies. The anti-CYP2 sequence rendered one major immunopositive protein of ≈49 kDa size, and weak signals for proteins of ≈41 and 56 kDa size. The anti-CYP4 sequence rendered two major bands of ≈56 and 59 kDa size, and also a weak immunoreaction with a protein of ≈43 kDa size. ELISA rendered only weak signals even with a 1:50 dilution of IgG-purified serum. A 10-day exposure to Aroclor 1254 did not appear to affect any of the immunopositive proteins, while total PCBs in soft bodies increased from 14–40 ng/g DW in controls to 373–638 ng/g DW in exposed mussels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号