首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56466篇
  免费   5381篇
  国内免费   6621篇
测绘学   1931篇
大气科学   8586篇
地球物理   13327篇
地质学   23433篇
海洋学   5159篇
天文学   8006篇
综合类   3101篇
自然地理   4925篇
  2023年   416篇
  2022年   1149篇
  2021年   1370篇
  2020年   1196篇
  2019年   1341篇
  2018年   1931篇
  2017年   1767篇
  2016年   2221篇
  2015年   1663篇
  2014年   2205篇
  2013年   2851篇
  2012年   2066篇
  2011年   2373篇
  2010年   2329篇
  2009年   2644篇
  2008年   2354篇
  2007年   2191篇
  2006年   2035篇
  2005年   1742篇
  2004年   1594篇
  2003年   1646篇
  2002年   1575篇
  2001年   1424篇
  2000年   1698篇
  1999年   2040篇
  1998年   1736篇
  1997年   1770篇
  1996年   1568篇
  1995年   1410篇
  1994年   1298篇
  1993年   1119篇
  1992年   958篇
  1991年   845篇
  1990年   740篇
  1989年   692篇
  1988年   644篇
  1987年   635篇
  1986年   577篇
  1985年   569篇
  1984年   624篇
  1983年   615篇
  1982年   568篇
  1981年   544篇
  1980年   474篇
  1979年   460篇
  1978年   457篇
  1977年   398篇
  1976年   362篇
  1974年   406篇
  1973年   389篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
981.
本文从物探科学技术的进步,勘查任务的发展变化、物探方法应用范畴的扩大和物性勘探等几个方面,论述了岩石和矿物物理性质测量、研究的重要性,指出:物性工作不可能毕其功于一役,并提出了五点建议:1.深入研究各类矿藏及其围岩(直至地面)物性的空间变化规律,为选择、研究合适的物探方法,提高物探效果,进一步探讨“直接”找矿问题,提供依据;2.这项工作可专门进行,但最好尽可能利用为其他目的而设计的钻井进行;3.物  相似文献   
982.
Field, petrologic and geochemical data were used to characterizefluid infiltration and partial melting during metamorphism ofpelitic rocks in the contact aureole of the Onawa pluton, centralMaine, USA. Mineral assemblages delineate five metamorphic zoneswithin the contact aureole: chlorite zone, andalusite–cordierite(a–c) zone, alkali feldspar zone, sillimanite zone andleucocratic-vein (l–v) zone. The sequence of observedmineral assemblages and mineral–fluid reactions calculatedby mass balance is similar to those observed in other contactaureoles. Pressure of contact metamorphism is 3 kbar, on thebasis of optimum geothermobarometry calculations. Metamorphictemperatures vary from 500C in the andalusite–cordieritezone to 65OC in the leucocratic-vein zone. Data from fieldobservations, mineral textures, observed reaction stoichiometry,geothermometry and major-element geochemistry suggest that theleucocratic veins of the l-v zone represent crystallized, partialmelts. Two overall calculated mineral reactions are responsiblefor vein formation: which can be modeled as combinations of two NKFMTASH meltingreactions: Progress of (M1) and (M2) was measured in eight samples, andreaction (M1) is the dominant melt-forming reaction in all samples.Partial melting (and vein formation) was therefore driven byinfiltration of the l-v zone by H2O-rich fluids. Calculatedtime-integrated fluid fluxes for l-v zone samples range from09 104 to 31 104 mol/cm2, and flow was in the directionof increasing temperature. KEY WORDS: pelites; contact metamorphism; fluid infiltration; partial melting; Onawa Pluton; Maine; USA *Corresponding author. Telephone:(516) 632–8192. Fax (516)632–8240 e-mail: gsymmes{at}ccmail.sunysb.edu  相似文献   
983.
To study the crystal chemistry of bernalite, Fe(OH)3, and the nature of the octahedral Fe3+ environment, Mössbauer spectra were recorded from 80 to 350 K, optical spectra were recorded at room temperature and a sample was studied using transmission electron microscopy. The Mössbauer spectrum of bernalite consists of a single six-line magnetic spectrum at 80 K. A broadened six-line magnetic spectrum with significantly less intensity is observed at higher temperatures, and is attributed to a small fraction of bernalite occurring as small particles. The variation of hyperfine magnetic field data for bulk bernalite with temperature is well described by the Weiss molecular field model with parameters of H 0 = 55.7±0.3 T and T N = 427±5K. The centre shift data were fitted to the Debye model with parameters 0=0.482±0.005 mm/s (relative to -Fe) and M=492±30 K. The quadrupole shift is near zero at 300 K, and does not vary significantly with temperature. Absorption spectra in the visible and near infrared range show three crystal field bands of Fe3+ at 11 300, 16000 and 23 200 cm-1, giving a crystal field splitting of 14 570 cm-1 and Racah parameters of B=629 cm-1 and C=3381 cm-1. Infrared reflection spectra show two distinct OH-stretching frequencies, which could correspond to two structurally different types of OH groups. A band was also observed at 2250 cm-1, suggesting the presence of molecular CO2 in the large cation site. Analytical transmission electron microscopy indicates that Si occurs within the bernalite structure as well as along domain boundaries. Electron diffraction and imaging show that bernalite is polysynthetically twinned along {100} planes with twin domains ranging from 3 to 20 nm in thickness. Results are discussed with respect to the nature of the octahedral Fe3+ site, and compared with values for other iron oxides and hydroxides.  相似文献   
984.
The carbon and oxygen isotopic composition of Fe-carbonate ore and its calcitic to dolomitic Devonian host rocks at the Steirischer Erzberg siderite deposit (Greywacke zone, Upper Austroalpine Unit) were determined in order to constrain the source and nature of the Fe-rich mineralizing fluid. The 18O-values obtained for various Fe-carbonate generations and the carbonate host lie within a similar range between + 14.6 and + 21.6 (V-SMOW). No good correlation exists between the relative ages of the carbonate phases and their O isotopic composition. The variation in 18O-values is due to metamorphic recrystallization with locally variable fluid/rock ratios. The average 13C-value of the carbonate host is +0.5 ± 1.2 (PDB) which corresponds well to worldwide Phanerozoic marine carbonate values. The first Fecarbonate generation has slightly lower 13C-values, on average -1.4 ± 0.8 (PDB). Recrystallization of both the carbonate host minerals and the ankerite/siderite led to significantly lower 13C-values of -4.2 ± 0.6 and-4.7 ± 0.7, respectively. Within the basal breccia of the post-Hercynian transgression series matrix calcite/ dolomite shows an average 13C-value of -2.9 ± 0.7, and matrix siderite/ankerite an average value of-4.1 ± 0.4. These data, together with Sr isotope data published previously, strongly support a late-diagenetic or epigenetic first Fe-mineralization from convecting formation waters. They ascended along extension faults and were driven by an increased heat flow caused by crustal thinning during a Devonian rifting phase that initiated the separation of the Noric terrane from Africa. A potential source of the Fe could have been the underlying Ordovician acid volcanics. Regional metamorphism related to collision tectonics in the Late Carboniferous (Hercynian) and later during the Alpine orogeny, caused intensive recrystallization and partial mobilization of the various carbonate phases.  相似文献   
985.
Improved precision of radiometric dating of ore deposits can provide information about the thermal history of hydrothermal circulation in cooling plutons. In Jales a Hercynian porphyritic two-mica granite and pre-Ordovician mica schists are cut and intensely altered by the Campo gold-quartz vein. The unaltered granite must be younger than 320 ± 6 Ma, and gives mica Rb-Sr ages of 308.5 ± 2.4 (1) Ma (muscovite) and 294.5 ± 1.1 Ma (biotite). Alteration muscovites from the granite give a weighted mean Rb-Sr age of 308.1 ± 1.5 Ma, and a mean 39Ar-40Ar age of 300.7 ± 2.8 Ma. Alteration muscovites from the mica schists give similar 39Ar-40Ar ages, averaging 303.0 ± 2.8 Ma. The results suggest that circulation of the Campo mineralising fluids took place no more than 2–4 Ma after the granite cooled through the muscovite Rb-Sr closure temperature, about 500 °C, and that subsequent cooling to biotite closure at about 300 °C took place at less than 14°C/Ma. The mean cooling rate following emplacement was 15 to 25 °C/Ma. The most detailed comparable published data, for the Cornubian ore field, imply much faster cooling rates.  相似文献   
986.
Mössbauer measurements on synthetic iron orthosilicate Fe2SiO4 (fayalite) were carried out in the antiferromagnetic spin state below T N 65 K. The Mössbauer parameters isomer shift , inner magnetic field H(0), angle between H(0) and the z-component of the electric field gradient (efg), quadrupole splitting QS and asymmetry parameter were determined as a function of temperature. These parameters could be attributed to the two crystallographic sites M1 and M2.The smaller isomer shift on M1 with respect to M2 displays the more covalent character of the Fe-O bond on M1, which is supported by previous neutron diffraction experiments. H(0) shows a Brillouin-type behaviour with different fields on the two crystallographic sites (stronger on M1) and a small discontinuity at T = 23 K which corresponds with previous magnetic measurements. The quadrupole splitting is equal on both sites within error bars, in agreement with previous theoretical results and in contradiction to previous Mössbauer refinements published elsewhere.  相似文献   
987.
H. Holail  R. Tony 《GeoJournal》1995,35(4):481-486
The stable isotopic composition (13C and 18O) and elemental (Sr and Mg) of marine molluscs are presented for Carditacea and Solenacea shells collected off the Mediterranean coast of Egypt. Based on shell microstructures and mineralogy, the bivalve shells are preserved in their original mineralogy and chemistry.The Sr and Mg concentrations of the bivalve shells have mean values of 1960 ppm and 226 ppm respectively. The stable isotopic composition generally show high values of 18O and 13C. The 18O values range from +0.1 to –1.8 PDB and most shells are highly enriched in13C; averaging +2.5 PDB. These elemental and isotopic signatures are analogous to modern marine bivalves from other localities.The oxygen and carbon isotopes, together with the calculated temperatures, suggest that the aragonitic bivalve shells were precipitated in isotopic equilibrium from warm marine waters.  相似文献   
988.
本文从分析地质体数学特征的思想出发,来研究“桃江式”锰矿的含矿母岩-“含锰岩系”的数学特征。含锰岩系主要由五种岩石组成:粘土岩、黑色页岩、条带状页岩、含锰灰岩和碳酸锰矿层,其数学特征研究包括其统计特征分析、结构特征分析和空间特征分析。文最后讨论了这些数学特征在寻找同类锰矿中的意义。  相似文献   
989.
In the Saxothuringian part of the Vosges (France), a first series of Variscan plutonic rocks (diorites to granites) has been intruded by several younger granites. Rocks of both the older generations have been cross-cut by the late orogenic Kagenfels granite. The averages of the hitherto published mineral ages of the earlier rock generations are 331 and 334 Ma, respectively, whereas Rb-Sr and K-Ar dates around 290 Ma have been reported for the Kagenfels granite. Because of the unlikely large age hiatus, a redetermination of the intrusion age of the Kagenfels granite formation appeared to be irrevocable. The newly obtained mineral ages on the Kagenfels granite (K-Ar and 40Ar/39Ar biotite ages as well as single zircon radiogenic 207Pb/206Pb data: 331 ± 5 Ma) are about 40 Ma older than the previous results. They are interpreted as giving the time of emplacement of the Kagenfels granite during the latest Visan. The mineral ages of the earlier plutonic rocks in this part of the Variscan Orogeny in all probability are not significantly different from their ages of intrusion. Therefore the age concordance of all three granitoid generations constrains a rather narrow time interval of orogenic magmatism close to the Lower-Upper Carboniferous boundary.  相似文献   
990.
Hydrostatic equilibrium and energy conservation determine the conditions in the gravitationally stabilized solar fusion reactor. We assume a matter density distribution varying non-linearly through the central region of the Sun. The analytic solutions of the differential equations of mass conservation, hydrostatic equilibrium, and energy conservation, together with the equation of state of the perfect gas and a nuclear energy generation rate = 0 n T nT m ,are given in terms of Gauss' hypergeometric function. This model for the structure of the Sun gives the run of density, mass, pressure, temperature, and nuclear energy generation through the central region of the Sun. Because of the assumption of a matter density distribution, the conditions of hydrostatic equilibrium and energy conservation are separated from the mode of energy transport in the Sun.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号