首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66254篇
  免费   1614篇
  国内免费   1336篇
测绘学   1731篇
大气科学   5511篇
地球物理   13760篇
地质学   23844篇
海洋学   5583篇
天文学   14235篇
综合类   329篇
自然地理   4211篇
  2021年   589篇
  2020年   612篇
  2019年   685篇
  2018年   1389篇
  2017年   1327篇
  2016年   1699篇
  2015年   1119篇
  2014年   1659篇
  2013年   3217篇
  2012年   2031篇
  2011年   2716篇
  2010年   2406篇
  2009年   3127篇
  2008年   2708篇
  2007年   2640篇
  2006年   2647篇
  2005年   2034篇
  2004年   1953篇
  2003年   1874篇
  2002年   1861篇
  2001年   1605篇
  2000年   1607篇
  1999年   1295篇
  1998年   1293篇
  1997年   1264篇
  1996年   1108篇
  1995年   1061篇
  1994年   941篇
  1993年   833篇
  1992年   819篇
  1991年   780篇
  1990年   846篇
  1989年   741篇
  1988年   701篇
  1987年   857篇
  1986年   738篇
  1985年   859篇
  1984年   1059篇
  1983年   968篇
  1982年   918篇
  1981年   872篇
  1980年   832篇
  1979年   755篇
  1978年   768篇
  1977年   714篇
  1976年   651篇
  1975年   624篇
  1974年   696篇
  1973年   697篇
  1972年   433篇
排序方式: 共有10000条查询结果,搜索用时 390 毫秒
341.
Moore  M. H.  Hudson  R. L.  Ferrante  R. F. 《Earth, Moon, and Planets》2003,92(1-4):291-306
Near the inner edge of the Edgeworth-Kuiper Belt (EKB) are Pluto and Charon, which are known to have N2- and H2O-dominated surface ices, respectively. Such non-polar and polar ices, and perhaps mixtures of them, also may be present on other trans-Neptunian objects. Pluto, Charon, and all EKB objects reside in a weak, but constant UV-photon and energetic ion radiation environment that drives chemical reactions in their surface ices. Effects of photon and ion processing include changes in ice composition, volatility, spectra, and albedo, and these have been studied in a number of laboratories. This paper focuses on ice processing by ion irradiation and is aimed at understanding the volatiles, ions, and residues that may exist on outer solar system objects. We summarize radiation chemical products of N2-rich and H2O-rich ices containing CO or CH4, including possible volatiles such as alcohols, acids, and bases. Less-volatile products that could accumulate on EKB objects are observed to form in the laboratory from acid-base reactions, reactions promoted by warming, or reactions due to radiation processing of a relatively pure ice (e.g., CO → C3O2). New IR spectra are reported for the 1–5 mu;m region, along with band strengths for the stronger features of carbon suboxide, carbonic acid, the ammonium and cyanate ions, polyoxymethylene, and ethylene glycol. These six materials are possible contributors to EKB surfaces, and will be of interest to observers and future missions.  相似文献   
342.
343.
We present the results of the preliminary study of the comet Hale-Bopp spectrum obtained April 17, 1997 by K. Churyumov and F. Mussayev with the help of the 1-meter Zeiss reflector and the echelle spectrometer (spectral resolutionλ/Δ λ ≈ 50000), CCD and the long slit, oriented along the radius-vector(“Sun-comet direction”). Energy distributions for three selected regions including the C3, C2 (0-0) and CN(Δ ν = 0) molecules emissions of the comet Hale-Bopp spectrum were built. The rotational lines of the CN(Δ ν = 0) band were identified. The nature of the high emission peak near λ 4020 Å in the C3 band is discussed. The presence of the cometary continuum of the nonsolar origin is assumed.  相似文献   
344.
 The mean state of the tropical atmosphere is important as the nature of the coupling between the ocean and the atmosphere depends nonlinearly on the basic state of the coupled system. The simulation of the annual cycle of the tropical surface wind stress by 17 atmospheric general circulation models (AGCMs) is examined and intercompared. The models considered were part of the Atmospheric Model Intercomparison Project (AMIP) and were integrated with observed sea surface temperature (SST) for the decade 1979–1988. Several measures have been devised to intercompare the performance of the 17 models on global tropical as well as regional scales. Within the limits of observational uncertainties, the models under examination simulate realistic tropical area-averaged zonal and meridional annual mean stresses. This is a noteworthy improvement over older generation low resolution models which were noted for their simulation of surface stresses considerably weaker than the observations. The models also simulate realistic magnitudes of the spatial distribution of the annual mean surface stress field and are seen to reproduce realistically its observed spatial pattern. Similar features are observed in the simulations of the annual variance field. The models perform well over almost all the tropical regions apart from a few. Of these, the simulations over Somali are interesting. Over this region, the models are seen to underestimate the annual mean zonal and meridional stresses. There is also wide variance between the different models in simulating these quantities. Large model-to-model variations were also seen in the simulations of the annual mean meridional stress field over equatorial Indian Ocean, south central Pacific, north east Pacific and equatorial eastern Pacific oceans. It is shown that the systematic errors in simulating the surface winds are related to the systematic errors in simulating the Inter-Tropical Convergence Zone (ITCZ) in its location and intensity. Weaker than observed annual mean southwesterlies simulated by most models over Somali is due to weaker than observed southwesterlies during the Northern Hemisphere summer. This is related to the weaker than observed land precipitation simulated by most models during the Northern Hemisphere summer. The diversity in simulation of the surface wind over Somali and equatorial Indian ocean is related to the diversity of AGCMs in simulating the precipitation zones in these regions. Received: 2 August 1996 / Accepted: 7 February 1997  相似文献   
345.
 A steady radon exhalation is assumed in most publications. In a village of North-East Hungary, however, high radon concentrations have been measured, differing strongly in neighbouring houses and varying in time, due to the interplay of geochemical phenomena. Received: 20 November 1995 · Accepted: 18 June 1996  相似文献   
346.
347.
348.
349.
The modeling of thermal emission from active lava flows must account for the cooling of the lava after solidification. Models of lava cooling applied to data collected by the Galileo spacecraft have, until now, not taken this into consideration. This is a flaw as lava flows on Io are thought to be relatively thin with a range in thickness from ∼1 to 13 m. Once a flow is completely solidified (a rapid process on a geological time scale), the surface cools faster than the surface of a partially molten flow. Cooling via the base of the lava flow is also important and accelerates the solidification of the flow compared to the rate for the ‘semi-infinite’ approximation (which is only valid for very deep lava bodies). We introduce a new model which incorporates the solidification and basal cooling features. This model gives a superior reproduction of the cooling of the 1997 Pillan lava flows on Io observed by the Galileo spacecraft. We also use the new model to determine what observations are necessary to constrain lava emplacement style at Loki Patera. Flows exhibit different cooling profiles from that expected from a lava lake. We model cooling with a finite-element code and make quantitative predictions for the behavior of lava flows and other lava bodies that can be tested against observations both on Io and Earth. For example, a 10-m-thick ultramafic flow, like those emplaced at Pillan Patera in 1997, solidifies in ∼450 days (at which point the surface temperature has cooled to ∼280 K) and takes another 390 days to cool to 249 K. Observations over a sufficient period of time reveal divergent cooling trends for different lava bodies [examples: lava flows and lava lakes have different cooling trends after the flow has solidified (flows cool faster)]. Thin flows solidify and cool faster than flows of greater thickness. The model can therefore be used as a diagnostic tool for constraining possible emplacement mechanisms and compositions of bodies of lava in remote-sensing data.  相似文献   
350.
The fundamental plane (FP) scaling relations and their evolution are a powerful tool for studying the global properties of early-type galaxies and their evolutionary history. The form of the FP, as derived by surveys in the local Universe at wavelengths ranging from the U to the K band, cannot be explained by metallicity variations alone among early-type galaxies; systematic variations in age, dark matter content, or homology breaking are required. A large-scale study of early-type galaxies at 0.1 < z < 0.6demonstrates that the SB intercept of the FP, the rest frame (U-V) colour, and the absorption line strengths all evolve passively, thereby implying a high mean formation redshift for the stellar content. The slope of the FP evolves with redshift, which is broadly consistent with systematic age effects occurring along the early-type galaxy sequence. The implication that the least luminous early-type galaxies formed later than the luminous galaxies is discussed in the context of the evolution of thecolour–magnitude relation, the Butcher–Oemler effect and hierarchical galaxy formation models. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号