Determining whether or not Pluto possesses, or once possessed, a subsurface ocean is crucial to understanding its astrobiological potential. In this study we use a 3D convection model to investigate Pluto’s thermal and spin evolution, and the present-day observational consequences of different evolutionary pathways. We test the sensitivity of our model results to different initial temperature profiles, initial spin periods, silicate potassium concentrations and ice reference viscosities. The ice reference viscosity is the primary factor controlling whether or not an ocean develops and whether that ocean survives to the present day. In most of our models present-day Pluto consists of a convective ice shell without an ocean. However if the reference viscosity is higher than 5 × 1015 Pa s, the shell will be conductive and an ocean should be present. For the nominal potassium concentration the present-day ocean and conductive shell thickness are both about 165 km; in conductive cases an ocean will be present unless the potassium content of the silicate mantle is less than 10% of its nominal value. If Pluto never developed an ocean, predominantly extensional surface tectonics should result, and a fossil rotational bulge will be present. For the cases which possess, or once possessed, an ocean, no fossil bulge should exist. A present-day ocean implies that compressional surface stresses should dominate, perhaps with minor recent extension. An ocean that formed and then re-froze should result in a roughly equal balance between (older) compressional and (younger) extensional features. These predictions may be tested by the New Horizons mission. 相似文献
With the aim to better understand the cause of the iron isotope heterogeneity of mantle-derived bulk peridotites, we compared the petrological, geochemical and iron isotope composition of four xenolith suites from different geodynamic settings; sub-arc mantle (Patagonia); subcontinental lithospheric mantle (Cameroon), oceanic mantle (Kerguelen) and cratonic mantle (South Africa). Although correlations were not easy to obtain and remain scattered because these rocks record successive geological events, those found between δ57Fe, Mg#, some major and trace element contents of rocks and minerals highlight the processes responsible for the Fe isotope heterogeneity. While partial melting processes only account for moderate Fe isotope variations in the mantle (<0.2 ‰, with bulk rock values yielding a range of δ57Fe ± 0.1 ‰ relative to IRMM-14), the main cause of Fe isotope heterogeneity is metasomatism (>0.9 ‰). The kinetic nature of rapid metasomatic exchanges between low viscosity melts/fluids and their wall-rocks peridotite in the mantle is the likely explanation for this large range. There are a variety of responses of Fe isotope signatures depending on the nature of the metasomatic processes, allowing for a more detailed study of metasomatism in the mantle with Fe isotopes. The current database on the iron isotope composition of peridotite xenoliths and mafic eruptive rocks highlights that most basalts have their main source deeper than the lithospheric mantle. Finally, it is concluded that due to a complex geological history, Fe isotope compositions of mantle xenoliths are too scattered to define a mean isotopic composition with enough accuracy to assess whether the bulk silicate Earth has a mean δ57Fe that is chondritic, or if it is ~0.1 ‰ above chondrites as initially proposed. 相似文献
The Berre lagoon (Provence, France), one of the largest Mediterranean brackish lagoons (155 km2), was occupied, at the turn of the 20th century, by extensive Zostera meadows (Zostera marina and probably Zostera noltii; perhaps over 6000 ha). Subsequently, the lagoon was disturbed by urban and industrial pollution and, from 1966, by the diversion of the Durance River. This resulted in a 10–49-fold and 8–31-fold increase of the freshwater and silt inputs, respectively. By means of digital analysis of aerial photographs for the years 1944, 1992, 1998 and 2004, coupled with ground truth for the last three dates, we mapped the Zostera meadows. The replacement of Z. marina by Z. noltii, the latter species being already dominant in the 1970s, was completed in 1990. In parallel to this substitution, the Zostera beds underwent a dramatic decline. Their depth limit, which was (6–9) m in the early 20th century, withdrew to 3.5, 3, 1 and less than 1 m by 1944, the 1970s, 1992 and 1998, respectively. Since 1998, Zostera must be considered as functionally extinct. The total surface area of Zostera meadows was of the order of 1.5 ha in 2004. In an attempt to alleviate disturbance, the input of freshwater and silt from the Durance River was significantly reduced from the early 1980s and 1990s respectively. Similarly, from the 1970s to the 1990s, urban and domestic pollution was drastically reduced. Despite these steps, Zostera meadows continued to shrink to near extinction. The lagoon has shifted from a system dominated by seagrass beds to a system with bare silt bottoms, which now occupy most of the lagoon. The reasons could be, in addition to continuing nutrient inputs, the resuspension of silt, no longer trapped under the seagrass canopy, during wind episodes, which are frequent in the area, and/or the release of nutrients from the bare silt habitat, which would constitute an indication of a possible hysteresis of the system. However, since 2000, the establishment of the mussel Mytilus galloprovincialis, a drop in turbidity and a slight, inconspicuous progression of Z. noltii could be the harbinger of a reverse shift of the system. 相似文献
The upper Tortonian Metochia marls on the island of Gavdos provide an ideal geological archive to trace variations in Aegean sediment supply as well as changes in the North African monsoon system. A fuzzy-cluster analysis on the multiproxy geochemical and rock magnetic dataset of the astronomically tuned sedimentary succession shows a dramatic shift in the dominance of 'Aegean tectonic' clusters to 'North African climate' clusters. The tectonic signature, traced by the starvation of the Cretan sediment, now enables to date the late Tortonian basin foundering on Crete, related to the tectonic break-up of the Aegean landmass, at c. 8.2 Ma. The synchronous decrease in the North African climate proxies is interpreted to indicate a change in the depositional conditions of the sink rather than a climatic change in the African source. This illustrates that interpretations of climate proxies require a multiproxy approach which also assesses possible contributions of regional tectonism. 相似文献
The non-destructive testing (NDT) plays a crucial role in geotechnical engineering and geophysical applications, especially in the design of earthquake-resistant foundations, geotechnical field investigation, and material characterization and detection of underground anomaly. Currently, the existing signal interpretation methods in NDT measurements still predominantly rely on empirical relations or subjective judgements. In this paper, we present the GeoNDT software, which is developed to provide an advanced physics-based signal interpretation method for NDT characterization of multiphase geomaterials. GeoNDT is able to model the propagation of stress waves and dispersion relations in dry (elastodynamic), saturated (two-phase poroelastodynamic), and three-phase frozen (multiphase poroelastodynamic) geomaterials using the meshless spectral element method. GeoNDT is flexible, general-purpose, and can be used seamlessly for advanced signal interpretation in geophysical laboratory testing including the bender element and ultrasonic pulse velocity tests, characterization of complex multiphase geomaterials, and in situ shallow seismic geophysics including the falling weight deflectometer and multichannel analysis of surface waves tests. The advanced physics-based signal interpretation feature of GeoNDT allows the quantitative characterization of geophysical and geomechanical properties of geomaterials and multilayered geosystems independently without making any simplified assumptions as common in the current practice.
We report observations from room temperature static recrystallization experiments (annealing times from minutes to year) of
cold-pressed, synthetic, coarse-grained, wet sodium chloride, prepared by broad ion beam polishing and SEM observations at
cryogenic temperature to observe directly the brine in grain boundaries. At all stages of annealing, the majority of the brine
in the samples is connected in 2D sections along grain boundaries. Another part of the brine is in isolated brine inclusion
arrays along grain boundaries and in brine inclusions left behind by migrating brine-filled grain boundaries. Most of these
boundaries are mobile because the aggregate is coarsening. We interpret that the boundaries without observable brine films
(<15 nm) and brine inclusion arrays are healed and immobile. Evolution of grain boundary structure involves three major processes.
First, dissolution on one side of the grain boundary and precipitation on the other side, resulting in grain boundary migration.
Second, the development of facets formed by low-index crystallographic planes of the grains bounding the grain boundary brine.
When both sides of a grain boundary are able to develop low-index facets in a thick brine film, the resulting impingement
boundary is interpreted to be immobile and may prevent the new grain from migrating into a deformed neighbor. When one side
of a faceted boundary consists of low-index crystallographic planes and the other side passively follows this faceted shape
along irrational surfaces, the boundary is mobile. Third, the healing of grain boundary brine films, producing solid–solid
grain boundaries without resolvable brine films. 相似文献
The Cretaceous and Cenozoic fill of the continental margins of southern Africa (South‐East Atlantic and Agulhas Margins) contains a continuous record of sediment supplied from the South African Plateau (SAP) for the past 134 million years. Estimates of solid sediment volumes deposited offshore were calculated from isopach maps and extrapolated vertical cross‐sections derived from a large amount of industrial geophysical data. Solid phase volumes and accumulation rates were calculated for six epochs: Lower Cretaceous (134–113 Ma), Mid Cretaceous (113–93.5 Ma), Upper Cretaceous (93.5–81 and 81–66 Ma), Palaeogene (66–25 Ma), Neogene (25–0 Ma). Our new compilation demonstrates the existence of two periods of elevated flux. The most important one occurs in the late Cretaceous (93.5–66 Ma) and was synchronous with an acceleration of onshore denudation as shown by thermochronometric data. After a period of extremely low accumulation rate, the second phase of elevated flux started in the Oligocene (~30–25 Ma) until present‐day. From these observations we suggest that the main phase of uplift of the SAP took place during the Upper Cretaceous. Two mechanisms, namely uplift caused by lithospheric delamination or by dynamic topography caused by the continent moving over the African Superplume, are viable explanations for our observations. The more recent and lower amplitude episode of enhanced accumulation rates is likely to correspond to a second period of uplift, potentially associated with the onset of uplift and extension along the East African Rift System. 相似文献