首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   210篇
  免费   8篇
  国内免费   5篇
测绘学   2篇
大气科学   11篇
地球物理   79篇
地质学   88篇
海洋学   3篇
天文学   26篇
自然地理   14篇
  2023年   1篇
  2022年   3篇
  2021年   4篇
  2020年   6篇
  2019年   7篇
  2018年   12篇
  2017年   11篇
  2016年   8篇
  2015年   9篇
  2014年   6篇
  2013年   13篇
  2012年   8篇
  2011年   17篇
  2010年   17篇
  2009年   9篇
  2008年   10篇
  2007年   14篇
  2006年   8篇
  2005年   2篇
  2004年   9篇
  2003年   3篇
  2002年   7篇
  2001年   7篇
  2000年   2篇
  1999年   2篇
  1998年   5篇
  1996年   2篇
  1995年   2篇
  1993年   2篇
  1990年   1篇
  1987年   1篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1975年   2篇
  1974年   1篇
  1973年   2篇
  1940年   1篇
  1925年   1篇
排序方式: 共有223条查询结果,搜索用时 15 毫秒
81.
The Cayconi Formation of the Crucero Basin, Puno Department, southeastern Peru, has been described as a 800–1000 m sequence of Oligocene and Miocene fanglomerate and lacustrine sedimentary rocks, interlayered with mafic and silicic volcanic rocks, and unconformably overlying Paleozoic and Cretaceous successions. On the basis of new field and petrological investigations, key aspects of the stratigraphic relationships of the rocks comprising this formation, and hence the viability of this lithostratigraphic name, are questioned. Thus, several sedimentary units previously assigned to the Cayconi Formation are reinterpreted as Cretaceous or older. We further argue that the formational terminology fails to accomodate the great variety of volcanic rocks, which are, moreover, disposed in isolated eruptive fields. We therefore propose establishment of the Crucero Supergroup as a broad, yet flexible framework for lithostratigraphic subdivision of the Tertiary sequences of the Cordillera Oriental of southeastern Peru. This new nomenclature accomodates the voluminous two-mica ash flow tuffs (Macusani Volcanics) and associated rocks of the Quenamari Meseta, a succession excluded from the existing lithostratigraphic classification scheme. It also permits distinction between the petrogenetically-contrasted upper Oligocene — Lower Miocene and Middle Miocene — Upper Miocene volcanic suites, which dominate, respectively, the Picotani and Quenamari Groups comprising the proposed Crucero Supergroup. Finally, the economically important granitic/rhyolitic intrusive centers cogenetic with the volcanic rocks are readily assignable to intrusive lithodemes in each group.  相似文献   
82.
The development of alternate bars in channelized rivers can be explained theoretically as an instability of the riverbed when the active channel width to depth ratio exceeds a threshold. However, the development of a vegetation cover on the alternate bars of some channelized rivers and its interactions with bar morphology have not been investigated in detail. Our study focused on the co‐evolution of alternate bars and vegetation along a 33 km reach of the Isère River, France. We analysed historical information to investigate the development of alternate bars and their colonization by vegetation within a straightened, embanked river subject to flow regulation, sediment mining, and vegetation management. Over an 80 year period, bar density decreased, bar length increased, and bar mobility slowed. Vegetation encroachment across bar surfaces accompanied these temporal changes and, once established, vegetation cover persisted, shifting the overall system from an unvegetated to a vegetated dynamic equilibrium state. The unvegetated morphodynamics of the impressively regular sequence of alternate bars that developed in the Isère following channelization is consistent with previous theoretical morphodynamic work. However, the apparent triggering dynamics of vegetation colonization needs to be investigated, based on complex biophysical instability processes. If instability related to vegetation colonization is confirmed, further work needs to focus on the relevance of initial conditions for this instability, and on related feedback effects such as how the morphodynamics of bare‐sediment alternate bars may have affected vegetation development and, in turn, how vegetation has created a new dynamic equilibrium state. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   
83.
The volcano–clastic sequence of Trompia Valley, which caps the Tre Valli Bresciane Variscan basement (TVB), comprises the Dosso dei Galli Conglomerate (DGC), the oldest deposit containing up to metre-sized metamorphic pebbles. This Lower Permian formation of the Trompia Basin was fed by the erosion products of the Variscan chain. We used microstructural and mineral chemical data on metamorphic pebbles of the DGC to infer a quantitative tectono-thermal evolution of the eroded pre-Permian basement and to compare them with those of TVB and the surrounding Southalpine basement units (tectono-metamorphic units = TMUs). Metapelitic and metaintrusive pebbles record a polyphase metamorphism with two metamorphic re-equilibrations: the first under epidote amphibolite facies (M1, ) and the second under greenschist facies (M2) conditions. Rock types and metamorphic data largely match those of TVB basement unit. The structural and metamorphic records in the pebbles are pre-Permian, and the conglomerate matrix is non-metamorphic. The DGC deposition age (283 ± 1–280.5 ± 2 Ma) constrains the minimal exhumation age of its basement source. The lack of staurolite bearing assemblages in metamorphic pebbles suggests that the DGC basement source was already exhumed to shallow structural levels (greenschist facies conditions) before the thermal equilibration consequent upon continental crust thickening induced by the Variscan collision.  相似文献   
84.
In order to define adequate prevention measures and to manage landslide emergencies, real-time monitoring is required. This paper presents two different applications of the remote sensing technique: the ground-based synthetic aperture radar interferometry, here proposed as a monitoring and early warning support for slope instability. Data acquisitions carried out through a ground-based synthetic aperture radar interferometer, operating in Ku band, installed in front of the observed slopes, are discussed. Two case studies, based on the use of the same apparatus (formerly developed by the Joint Research Center of the European Commission and by Ellegi-LiSALab srl), are reported: the first one concerns the monitoring of a large landslide, named Ruinon (Valfurva, Italy). The second one deals with the monitoring of the NW unstable slope in the Stromboli island aimed to implementing an early warning system. Acquired interferometric data are processed to provide displacements and velocity maps of the monitored area. The monitoring services ongoing on the Ruinon landslide and on Stromboli demonstrate the capability of this technique to operate in different operative settings (i.e., different phenomena and geological framework) and for different aims (monitoring for prevention, early warning, and emergency assessment). This methodology has also been proved by national and regional authorities of civil protection in order to provide a real-time monitoring for emergency management.  相似文献   
85.
The Murzuq Basin is one of the most petroliferous basins of North Africa. Its remote eastern flank has been largely ignored since early reconnaissance work in the 1950s and 1960s. This article presents new stratigraphic and sedimentological data on the Neoproterozoic through Devonian succession from the Mourizidie and Dor el Gussa regions. The Neoproterozoic to Cambrian Mourizidie and Hasawnah formations in the eastern part of the Mourizidie region dip to the east and north‐east, resting directly on late Precambrian metasediments and granitoids. These strata record the initial progradation of sand‐dominated braidplain systems upon peneplained Precambrian basement. Rhyolite clasts in the Hasawnah Formation may record tectonically driven uplift and unroofing in the southern Tibesti Massif or tectonomagmatic rejuvenation to the south of this massif. In the western part of the Mourizidie region, Late Ordovician through Silurian strata (Mamuniyat and Tanezzuft–Akakus formations) directly overlie late Precambrian metasediments and granitoids, and dip at a low angle towards the west into the Murzuq Basin. Elsewhere at the eastern Murzuq Basin flank, in Dor el Gussa, Late Ordovician glaciogenic sediments rest with angular unconformity upon shallow marine sandstones of Cambrian–Ordovician age. This angular unconformity may also occur in the Mourizidie region and indicates widespread tectonism, either as a result of a Middle–Late Ordovician orogenic event, far‐field tectonism related to the opening of the Rheic Ocean along the northern margin of Gondwana or alternatively crustal depression associated with the growth of Late Ordovician ice sheets. Unconformity development was also probably associated with glacial incision. Following ice sheet retreat, isostatic rebound during deglaciation resulted in uplift of tens to hundreds of metres, locally removing all Cambrian and Ordovician formations. Rising sea levels in the Silurian led to deposition of the Tanezzuft Formation on Precambrian basement in the northwestern Mourizidie region.  相似文献   
86.
87.
In Central Iran, the mixed siliciclastic?carbonate Nakhlak Group of Triassic age is commonly seen to have a Cimmerian affinity, although it shows considerable resemblances with the Triassic Aghdarband Group in far northeastern Iran, east of Kopeh-Dagh area, with Eurasian affinity. The Nakhlak Group is composed of the Alam (Late Olenekian?Anisian), Baqoroq (Late Anisian??Early Ladinian), and Ashin (Ladinian??Early Carnian) formations consisting mainly of volcanoclastic sandstone and shale and fossiliferous limestone. The Baqoroq Formation contains also metamorphic detritus. Sandstone petrofacies reflect the detrital evolution from active volcanism to growing orogen and again active volcanism. Textural and modal analyses of volcanic lithic fragments from the Alam Formation reflect the eruption style and magma composition of a felsic to intermediate syn-sedimentary arc activity. The detrital modes of the Baqoroq Formation sediments suggest a recycled orogenic source followed by arc activity in a remnant fore-arc basin. The sandstone samples from the Ashin Formation demonstrate a continuity of felsic to intermediate arc activity. Major and trace element concentrations of the Nakhlak Group clastic samples support sediment supply from first-cycle material and felsic magmatic arc input. The enrichment in LREE, the negative Eu anomalies, and the flat HREE patterns indicate origination from the old upper continental crust and young arc material. The chemical index of alteration (CIA ~51–70 for sandstone and 64–76 for shale samples) indicates medium degrees of chemical weathering at the source. Petrographical and geochemical evidence together with facies analysis constructed the following depositional conditions for the Nakhlak Group sediments: In the Olenekian, a fore-arc shallow to deep marine depositional basin developed that later was filled by recycled and arc-related detritus and changed into a continental basin in the Anisian. Ladinian extension let to a deepening of the basin. With respect to the similarities between the Nakhlak and Aghdarband (NE Iran) groups and unusual present-day position of the Nakhlak Group with no stratigraphic connection to the surrounding area, the development of first a fore-arc basin and later change into a back-arc depositional basin in close relation with the Aghdarband basin at the southern Eurasian active margin in the Triassic are here proposed. Understanding the basin development recorded in the Nakhlak Group provides constraints on the closure history of Palaeotethys and of the tectonic evolution of early Mesozoic basins at the southern Eurasian margin before the Cimmerian Orogeny.  相似文献   
88.
The historical site of the Monte Mario lower Pleistocene succession (Rome, Italy) is an important marker of the Pliocene/Pleistocene boundary. Recently, the Monte Mario site was excavated and restudied. A spectacular angular unconformity characterizes the contact between the Monte Vaticano and the Monte Mario formations, which marks the Pliocene/Pleistocene boundary. Biostratigraphical analyses carried out on ostracod, foraminifer, and calcareous nannofossil assemblages indicate an Early Pliocene age (topmost Zanclean, 3.81–3.70 Ma) for the underlying Monte Vaticano Formation, whereas the Monte Mario Formation has been dated as early Pleistocene (Santernian, 1.66–1.59 Ma). Palaeomagnetic analyses point to C2Ar and C1r2r polarity chrons for the Monte Vaticano and the Monte Mario formations, respectively. The Monte Mario Formation consists of two obliquity-forced depositional sequences (MM1 and MM2) characterized by transgressive systems tracts of littoral marine environments at depths, respectively, of 40–80 m and 15–20 m. The data obtained from foraminifer and ostracod assemblages allow us to reconstruct early Pleistocene relative sea-level changes near Rome. At the Plio/Pleistocene transition, a relative sea-level drop of at least 260 m occurred, as a result of both tectonic uplift of the central Tyrrhenian margin and glacio-eustatic changes linked to early Pleistocene glaciation (Marine Isotope Stage 58).  相似文献   
89.
The reported data present the stratigraphy of several sections across a Middle-Late Jurassic Radiolaritic Unit, well exposed in different thrust sheets pertaining to the Maghrebian chain of Southwestern Sicily. The aim was to define the chronostratigraphical distribution of the Jurassic biosiliceous sedimentation in the Sicanian palaeogeographical zone, a deep water basin belonging to the Southern Tethys continental margin. The radiolarian biostratigraphy indicates that the switching from carbonate to siliceous sedimentation in the Sicanian Basin is referable to the Bajocian, as shown by the section of Campofiorito, near Corleone. The biostratigraphical dataset allows the correlation between the onset of biosiliceous sedimentation and the fall of biodiversity in the Sicanian basin with the carbonate productivity crisis, indicated by the highest eutrophication that affected Western Tethys during Middle Jurassic times. Editorial handling: J.-P. Billon-Bruyat & M. Chiari (Guest)  相似文献   
90.
The thermal regime of rivers is threatened by anthropogenic stresses at a large variety of timescales. We focus on sub‐daily thermal alterations induced by the release of hypolimnetic water for hydropower production (thermopeaking). We analyse the thermal signal focusing on the following characteristics that are potentially affected by hypolimnetic releases: (i) sub‐daily thermal rate of change and (ii) oscillation frequencies contained in the thermal signal. Through a proper scaling, we derive two dimensionless at‐a‐station indicators to compare alterations among stations with different locations and physiographic characteristics of the basins. Then we analyse the data from two different thermal datasets (Italy/Switzerland) for a total of 48 stations with 10 min time resolution of temperature data. The stations are grouped according to the absence of upstream hydropeaking releases (29 stations, reference group) and the existence of upstream hydropeaking, hence potentially impacted by thermopeaking (19 stations, altered group). Using a simple statistical approach, based on a non‐parametric definition of outliers, we identify the range of variability of the two indicators for the reference, unaltered group. This range measures the ‘natural’ sub‐daily thermal variability of the proposed indicators. Finally, we investigate the seasonality effects on the two proposed indicators and it results, that sub‐daily alterations mostly occur during summer. The two indicators represent a novel tool for the assessment of river thermal regime alterations and can be easily included in existing methodologies to assess river quality. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号