首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   208篇
  免费   10篇
  国内免费   5篇
测绘学   2篇
大气科学   11篇
地球物理   79篇
地质学   88篇
海洋学   3篇
天文学   26篇
自然地理   14篇
  2023年   1篇
  2022年   3篇
  2021年   4篇
  2020年   6篇
  2019年   7篇
  2018年   12篇
  2017年   11篇
  2016年   8篇
  2015年   9篇
  2014年   6篇
  2013年   13篇
  2012年   8篇
  2011年   17篇
  2010年   17篇
  2009年   9篇
  2008年   10篇
  2007年   14篇
  2006年   8篇
  2005年   2篇
  2004年   9篇
  2003年   3篇
  2002年   7篇
  2001年   7篇
  2000年   2篇
  1999年   2篇
  1998年   5篇
  1996年   2篇
  1995年   2篇
  1993年   2篇
  1990年   1篇
  1987年   1篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1975年   2篇
  1974年   1篇
  1973年   2篇
  1940年   1篇
  1925年   1篇
排序方式: 共有223条查询结果,搜索用时 31 毫秒
151.
Output generated by hydrologic simulation models is traditionally calibrated and validated using split‐samples of observed time series of total water flow, measured at the drainage outlet of the river basin. Although this approach might yield an optimal set of model parameters, capable of reproducing the total flow, it has been observed that the flow components making up the total flow are often poorly reproduced. Previous research suggests that notwithstanding the underlying physical processes are often poorly mimicked through calibration of a set of parameters hydrologic models most of the time acceptably estimates the total flow. The objective of this study was to calibrate and validate a computer‐based hydrologic model with respect to the total and slow flow. The quick flow component used in this study was taken as the difference between the total and slow flow. Model calibrations were pursued on the basis of comparing the simulated output with the observed total and slow flow using qualitative (graphical) assessments and quantitative (statistical) indicators. The study was conducted using the Soil and Water Assessment Tool (SWAT) model and a 10‐year historical record (1986–1995) of the daily flow components of the Grote Nete River basin (Belgium). The data of the period 1986–1989 were used for model calibration and data of the period 1990–1995 for model validation. The predicted daily average total flow matched the observed values with a Nash–Sutcliff coefficient of 0·67 during calibration and 0·66 during validation. The Nash–Sutcliff coefficient for slow flow was 0·72 during calibration and 0·61 during validation. Analysis of high and low flows indicated that the model is unbiased. A sensitivity analysis revealed that for the modelling of the daily total flow, accurate estimation of all 10 calibration parameters in the SWAT model is justified, while for the slow flow processes only 4 out of the set of 10 parameters were identified as most sensitive. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
152.
153.
 The massive unit of a lava flow from Porri volcano (Salina, Aeolian Islands) displays many unusual structures related to the physical interaction between two different magmas. The magma A represents approximately 80% of the exposed lava surface; it has a crystal content of 51 vol.% and a dacitic glass composition (SiO2=63–64 wt.%). The magma B has a basaltic-andesite glass composition (SiO2=54–55 wt.%) and a crystal content of approximately 18 vol.%. It occurs as pillow-like enclaves, banding, boudin-like and rolling structures which are hosted in magma A. Structural analysis suggests that banding and boudin-like structures are the result of the deformation of enclaves at different shear strain. The linear correlation between strain and stratigraphic height of the measured elements indicates a single mode of deformation. We deduce that the component B deformed according to a simple shear model. Glass analyses of the A–B boundary indicate that A and B liquids mix together at high shear strain, whereas only mingling occurs at low shear strain. This suggests that the amount of deformation (i.e. forced convection) plays an important role in the formation of hybrid magmas. High shear strain may induce stretching, shearing and rolling of fluids which promote both forced convection and dynamical diffusion processes. These processes allow mixing of magmas with large differences in their physical properties. Received: 15 July 1995 / Accepted: 30 May 1996  相似文献   
154.
We present direct observations of Mars zonal wind velocities around northern spring equinox (LS = 336°, LS = 355°, LS = 42°) during martian year 27 and 29. Data was acquired by means of infrared heterodyne spectroscopy of CO2 features at 959.3917 cm?1 (10.4232 μm) and 957.8005 cm?1 (10.4405 μm) using the Cologne Tuneable Heterodyne Infrared Spectrometer (THIS) at the McMath–Pierce telescope of the National Solar Observatory on Kitt Peak in Arizona and the NASA Infrared Telescope Facility on Mauna Kea, Hawaii between 2005 and 2008. Winds were measured on the dayside of Mars with an unprecedented spatial resolution allowing sampling of up to nine independent latitudes over the martian disk. Retrieved wind velocities depend strongly on latitude and season with values ranging from 180 m/s prograde to ?94 m/s retrograde. A comparison of the observational results to predicted values from the Mars Climate Database yield a reasonable agreement between modeling and observation.  相似文献   
155.
The vertical thermal structure of a primitive terrestrial atmosphere is investigated with a radiative-convective-photochemical model. The radiative code includes the short wave contribution from water vapor and ozone, and long wave contribution from methane, carbon dioxide, water vapor and ozone. Calculations for an oxygen level of 10?3 PAL and different CO2 levels shows that the water vapor content, and consequently the odd hydrogen concentration, in the stratosphere is controlled by the temperature which is strongly reduced from present values due to the lower ozone content. As a result, depending on the assumed mechanism for controlling the H2O mixing ratio, a considerable feedback is introduced on the ozone columnar density.The same model is used to parameterize the infrared outgoing flux as a function of surface temperature to be used in a two-mode energy balance climate model. This computation is addressed to the question of whether a large amount of carbon dioxide in the primitive atmosphere could be effective in producing a greenhouse effect able to compensate for the Sun's lower luminosity. It is found that with 25 times the present carbon dioxide mixing ratio, due to the ice-albedo feedback mechanism, a decrease of 9% in the solar constant could be enough to produce an ice-covered Earth.  相似文献   
156.
A geological-geophysical expedition (Ev-K2–CNR 1988) visited the area from West Kun Lun to Karakorum (K2–Gasherbrum). Seven tectonic units including sedimentary, magmatic and metamorphic rocks were distinguished in this area; the northernmost are suggested to belong to the Kun Lun and Qiangtang Microplates. The sedimentary sequence of Shaksgam is proved to extend from the Permian to the Jurassic, with Carboniferous and Cretaceous ages more doubtful. This sequence shows intermediate affinities between the Karakorum and the Qiangtang. The two southernmost units belong to the Karakorum Microplate. The Karakorum Fault Zone comprises a complex pattern of faults and thrusts, with brittle deformation and uplifting of granitoid bodies.  相似文献   
157.
Through examination of the vent region of Volcán Huaynaputina, Peru, we address why some major explosive eruptions do not produce an equivalent caldera at the eruption site. Here, in 1600, more than 11 km3 DRE (VEI 6) were erupted in three stages without developing a volumetrically equivalent caldera. Fieldwork and analysis of aerial photographs reveal evidence for cryptic collapse in the form of two small subsidence structures. The first is a small non-coherent collapse that is superimposed on a cored-out vent. This structure is delimited by a partial ring of steep faults estimated at 0.85 by 0.95 km. Collapse was non-coherent with an inwardly tilted terrace in the north and a southern sector broken up along a pre-existing local fault. Displacement was variable along this fault, but subsidence of approximately 70 m was found and caused the formation of restricted extensional gashes in the periphery. The second subsidence structure developed at the margin of a dome; the structure has a diameter of 0.56 km and crosscuts the non-coherent collapse structure. Subsidence of the dome occurred along a series of up to seven concentric listric faults that together accommodate approximately 14 m of subsidence. Both subsidence structures total 0.043 km3 in volume, and are much smaller than the 11 km3 of erupted magma. Crosscutting relationships show that subsidence occurred during stages II and III when ∼2 km3 was erupted and not during the main plinian eruption of stage I (8.8 km3). The mismatch in erupted volume vs. subsidence volume is the result of a complex plumbing system. The stage I magma that constitutes the bulk of the erupted volume is thought to originate from a ∼20-km-deep regional reservoir based on petrological constraints supported by seismic data. The underpressure resulting from the extraction of a relatively small fraction of magma from the deep reservoir was not sufficient enough to trigger collapse at the surface, but the eruption left a 0.56-km diameter cored-out vent in which a dome was emplaced at the end of stage II. Petrologic evidence suggests that the stage I magma interacted with and remobilized a shallow crystal mush (∼4–6 km) that erupted during stage II and III. As the crystal mush erupted from the shallow reservoir, depressurization led to incremental subsidence of the non-coherent collapse structure. As the stage III eruption waned, local pressure release caused subsidence of the dome. Our findings highlight the importance of a connected magma reservoir, the complexity of the plumbing system, and the pattern of underpressure in controlling the nature of collapse during explosive eruptions. Huaynaputina shows that some major explosive eruptions are not always associated with caldera collapse. Editorial responsibility: J Stix  相似文献   
158.
Agricultural grasses cover a major part of the land surface in temperate agro-ecosystems and contribute significantly to the formation of soil organic matter. Crop-derived lipids are assumed to be responsible for fast carbon turnover in soils. Differences in lipid distribution patterns between crops following C3 and C4 photosynthesis pathways have rarely been described, but could be useful for source apportionment of crop-derived input into soils or sediments. The distribution of long chain n-carboxylic acids (C22, C24, C26) reveals significant differences between crop plants following either the C3 or the C4 photosynthetic carbon fixation pathway. The plant compartments leaves, stems and roots of C4 plants contain relatively large proportions (> 40%) of n-C24 carboxylic acid when compared to C3 plants. These reveal larger relative proportions of n-C22 and n-C26 acids, whose relative abundance is subject to change between different plant compartments and during the growing season. The carboxylic acid ratio [CAR = n-C24/(n-C22 + n-C26) carboxylic acids] provides distinct ratios for C4 (> 0.67) and C3 crops (< 0.67) and can thus be used as a molecular marker for the differentiation of crop plant biomass. In combination with the bulk stable carbon isotopic composition (δ13C) the CAR can be used as a tool for the estimation of the C4 derived carbon proportion in soils or sediments.  相似文献   
159.
During the July–August 2001 eruption of Mt. Etna development of extensional fractures/faults and grabens accompanied magma intrusion and subsequent volcanic activity. During the first days of the eruption, we performed an analysis of attitude, displacement and propagation of fractures and faults exposed on the ground surface in two sites, Torre del Filosofo and Valle del Leone, located along the same fracture system in the region surrounding the Valle del Bove depression on the eastern flank of Mt. Etna. Fractures and faults formed as the consequence of a shallow intruding dyke system that fed the several volcanic centres developed along the fracture system. The investigated sites differ in slope attitude and in geometrical relationships between fractures and slopes. In particular, the fracture system propagated parallel to the gentle slope (<7° dip) in the Torre del Filosofo area, and perpendicular to the steep slope (25° dip) in the Valle del Leone area. In the Torre del Filosofo area, slight graben subsidence and horizontal extension of the ground surface by about 3 m were recorded. In the Valle del Leone area, extensional faulting forming a larger and deeper graben with horizontal extension of the ground surface by about 10 m was recorded. For the Valle del Leone area, we assessed a downhill dip of 14° for the graben master fault at the structural level beneath the graben where the fault dip shallows. These results suggest that dyke intrusion at Mount Etna, and particularly in the region surrounding the Valle del Bove depression, may be at the origin of slope failure and subsequent slumps where boundary conditions, i.e. geometry of dyke, slope dip and initial shear stress, amongst others, favour incipient failures.  相似文献   
160.
Granger causality (GC) is used in the econometrics literature to identify the presence of one- and two-way coupling between terms in noisy multivariate dynamical systems. Here we test for the presence of GC to identify a soil moisture (S) feedback on precipitation (P) using data from Illinois. In this framework S is said to Granger cause P if F(Ptt−Δt)≠F(Ptt−Δt−St−Δt) where F denotes the conditional distribution of P, Ωt−Δt represents the set of all knowledge available at time t−Δt, and Ωt−Δt−St−Δt represents all knowledge except S. Critical for land–atmosphere interaction research is that Ωt−Δt includes all past information on P as well as S. Therefore that part of the relation between past soil moisture and current precipitation which results from precipitation autocorrelation and soil water balance will be accounted for and not attributed to causality. Tests for GC usually specify all relevant variables in a coupled vector autoregressive (VAR) model and then calculate the significance level of decreased predictability as various coupling coefficients are omitted. But because the data (daily precipitation and soil moisture) are distinctly non-Gaussian, we avoid using a VAR and instead express the daily precipitation events as a Markov model. We then test whether the probability of storm occurrence, conditioned on past information on precipitation, changes with information on soil moisture. Past information on precipitation is expressed both as the occurrence of previous day precipitation (to account for storm-scale persistence) and as a simple soil moisture-like precipitation-wetness index derived solely from precipitation (to account for seasonal-scale persistence). In this way only those fluctuations in moisture not attributable to past fluctuations in precipitation (e.g., those due to temperature) can influence the outcome of the test. The null hypothesis (no moisture influence) is evaluated by comparing observed changes in storm probability to Monte-Carlo simulated differences generated with unconditional occurrence probabilities. The null hypothesis is not rejected (p>0.5) suggesting that contrary to recently published results, insufficient evidence exists to support an influence of soil moisture on precipitation in Illinois.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号