首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   0篇
大气科学   9篇
地球物理   2篇
地质学   22篇
海洋学   1篇
天文学   9篇
自然地理   3篇
  2021年   2篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2013年   4篇
  2012年   4篇
  2011年   5篇
  2010年   2篇
  2009年   4篇
  2007年   1篇
  2005年   2篇
  2004年   4篇
  2003年   6篇
  1999年   1篇
  1997年   2篇
  1995年   1篇
  1992年   1篇
  1984年   1篇
  1981年   1篇
  1973年   1篇
排序方式: 共有46条查询结果,搜索用时 15 毫秒
11.
We use a dynamic finite-difference model to simulate martian landslides in the Valles Marineris canyon system and Olympus Mons aureole using three different modal rheologies: frictional, Bingham, and power law. The frictional and Bingham modes are applied individually. Fluidized rheology is treated as a combination of frictional and power-law modes; general fluidization can include pore pressure contributions, whereas acoustic fluidization does not. We find that general fluidization most often produces slides that best match landslide geometry in the Valles Marineris. This implies that some amount of supporting liquid or gas was present in the material during failure. The profile of the Olympus Mons aureole is not well matched by any landslide model, suggesting an alternative genesis. In contrast, acoustic fluidization produces the best match for a lunar slide, a result anticipated for dry crust with no overlying atmosphere. The presence of pressurized fluid during Valles Marineris landsliding may be due to liquid water beneath a thin cryosphere (<1-2 km) or flash sublimation of CO2.  相似文献   
12.
Despite their sensitivity to climate variability, few of the abundant sinkhole lakes of Florida have been the subject of paleolimnological studies to discern patterns of change in aquatic communities and link them to climate drivers. However, deep sinkhole lakes can contain highly resolved paleolimnological records that can be used to track long-term climate variability and its interaction with effects of land-use change. In order to understand how limnological changes were regulated by regional climate variability and further modified by local land-use change in south Florida, we explored diatom assemblage variability over centennial and semi-decadal time scales in an ~11,000-yr and a ~150-yr sediment core extracted from a 21-m deep sinkhole lake, Lake Annie, on the protected property of Archbold Biological Station. We linked variance in diatom assemblage structure to changes in water total phosphorus, color, and pH using diatom-based transfer functions. Reconstructions suggest the sinkhole depression contained a small, acidic, oligotrophic pond ~11000–7000 cal yr BP that gradually deepened to form a humic lake by ~4000 cal yr BP, coinciding with the onset of modern precipitation regimes and the stabilization of sea-level indicated by corresponding palynological records. The lake then contained stable, acidophilous planktonic and benthic algal communities for several thousand years. In the early AD 1900s, that community shifted to one diagnostic of an even lower pH (~5.6), likely resulting from acid precipitation. Further transitions over the past 25 yr reflect recovery from acidification and intensified sensitivity to climate variability caused by enhanced watershed runoff from small drainage ditches dug during the mid-twentieth Century on the surrounding property.  相似文献   
13.
Farside explorer: unique science from a mission to the farside of the moon   总被引:4,自引:0,他引:4  
Farside Explorer is a proposed Cosmic Vision medium-size mission to the farside of the Moon consisting of two landers and an instrumented relay satellite. The farside of the Moon is a unique scientific platform in that it is shielded from terrestrial radio-frequency interference, it recorded the primary differentiation and evolution of the Moon, it can be continuously monitored from the Earth–Moon L2 Lagrange point, and there is a complete lack of reflected solar illumination from the Earth. Farside Explorer will exploit these properties and make the first radio-astronomy measurements from the most radio-quiet region of near-Earth space, determine the internal structure and thermal evolution of the Moon, from crust to core, and quantify impact hazards in near-Earth space by the measurement of flashes generated by impact events. The Farside Explorer flight system includes two identical solar-powered landers and a science/telecommunications relay satellite to be placed in a halo orbit about the Earth–Moon L2 Lagrange point. One lander would explore the largest and oldest recognized impact basin in the Solar System— the South Pole–Aitken basin—and the other would investigate the primordial highlands crust. Radio astronomy, geophysical, and geochemical instruments would be deployed on the surface, and the relay satellite would continuously monitor the surface for impact events.  相似文献   
14.
Organic compounds are removed from the atmosphere and deposited to the Earth's surface via precipitation. In this study, we quantified variations of dissolved organic carbon (DOC) in precipitation during storm events at the Shale Hills Critical Zone Observatory, a forested watershed in central Pennsylvania (USA). Precipitation samples were collected consecutively throughout the storm during 13 events, which spanned a range of seasons and synoptic meteorological conditions, including a hurricane. Further, we explored factors that affect the temporal variability by considering relationships of DOC in precipitation with atmospheric and storm characteristics. Concentrations and chemical composition of DOC changed considerably during storms, with the magnitude of change within individual events being comparable or higher than the range of variation in average event composition among events. Although some previous studies observed that concentrations of other elements in precipitation typically decrease over the course of individual storm events, results of this study show that DOC concentrations in precipitation are highly variable. During most storm events, concentrations decreased over time, possibly as a result of washing out of the below‐cloud atmosphere. However, increasing concentrations that were observed in the later stages of some storm events highlight that DOC removal with precipitation is not merely a dilution response. Increases in DOC during events could result from advection of air masses, local emissions during breaks in precipitation, or chemical transformations in the atmosphere that enhance solubility of organic carbon compounds. This work advances understanding of processes occurring during storms that are relevant to studies of atmospheric chemistry, carbon cycling, and ecosystem responses.  相似文献   
15.
The European Venus Explorer (EVE) mission described in this paper was proposed in December 2010 to ESA as an ‘M-class’ mission under the Cosmic Vision programme. It consists of a single balloon platform floating in the middle of the main convective cloud layer of Venus at an altitude of 55?km, where temperatures and pressures are benign (~25°C and ~0.5 bar). The balloon float lifetime would be at least 10 Earth days, long enough to guarantee at least one full circumnavigation of the planet. This offers an ideal platform for the two main science goals of the mission: study of the current climate through detailed characterization of cloud-level atmosphere, and investigation of the formation and evolution of Venus, through careful measurement of noble gas isotopic abundances. These investigations would provide key data for comparative planetology of terrestrial planets in our solar system and beyond.  相似文献   
16.
Oxygen and carbon isotopes in Jordanian phosphorites and associated fossils   总被引:1,自引:0,他引:1  
Stable isotopes have proven to be efficient tools for paleoenvironmental analysis and interpretation of paleotemperature. Oxygen and carbon isotopes were analyzed in carbonate flourapatite (francolite), oyster shells, tests of foraminifera and ostracods from the Phosphorite Unit throughout Jordan.Isotopic analysis showed δ18O to be enriched in authigenic francolite in Upper Cretaceous in NW Jordan, indicating lower temperatures, a deeper depositional environment and lower salinity than Central Jordan. In Central Jordan, the local basin of Hafira shows enrichment of δ18O indicating a deeper depositional environment than shallower highs in Mutarammil and Wadi El-Hasa. The δ13C shows that the depositional environment was oxic to suboxic and may have reached the suboxic to anoxic interface in the deeper environment in NW Jordan.δ18O values in tests of foraminifera and ostracods are similar to δ18O values of authigenic phosphate, which is enriched in NW Jordan, indicating lower temperature, lower salinity and a deeper environment than Central Jordan. In Central Jordan, δ13C shows more depletion in the Sultani section due to land derived organic carbon (food web supply) carried by terrestrial water draining to the sea.The δ18O in oyster shells show an upward enrichment in the Wadi El-Hasa section, which indicate an increase of intense upwelling, enrichment of nutrients, development of productivity and growth of oyster buildups. Meanwhile, Hafira shows enrichment of δ18O and lower temperature, in agreement with foraminifera and ostracods. The two samples of oysters from SE Jordan, although affected by diagenesis, show heavier oxygen to the north, indicating a deeper water environment and lower salinity in the same basin.  相似文献   
17.
After more than five years of preparation, the mid-infrared interferometric instrument MIDI has been transported to Paranal where it will undergo testing and commissioning on theVery Large Telescope Interferometer VLTI from the end of 2002through large part of this year 2003. Thereafter it will be available as a user instrument to perform interferometric observations over the8 μm–13 μm wavelength range, with a spatial resolution of typically 20 milliarcsec, a spectral resolution of up to 250, and an anticipated point source sensitivity of N = 3–4 mag or 1–2.5 Jy for self –fringe tracking, which will be the only observing mode during the first months of operation. We describe the layout of the instrument, laboratory tests, and expected performance, both for broadband and spectrally resolved observing modes. We also briefly outline the planned guaranteed time observations. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
18.
19.
Foreland basin strata provide an opportunity to review the depositional response of alluvial systems to unsteady tectonic load variations at convergent plate margins. The lower Breathitt Group of the Pocahontas Basin, a sub‐basin of the Central Appalachian Basin, in Virginia preserves an Early Pennsylvanian record of sedimentation during initial foreland basin subsidence of the Alleghanian orogeny. Utilizing fluvial facies distributions and long‐term stacking patterns within the context of an ancient, marginal‐marine foreland basin provides stratigraphic evidence to disentangle a recurring, low‐frequency residual tectonic signature from high‐frequency glacioeustatic events. Results from basin‐wide facies analysis, corroborated with petrography and detrital zircon geochronology, support a two end‐member depositional system of coexisting transverse and longitudinal alluvial systems infilling the foredeep during eustatic lowstands. Provenance data suggest that sediment was derived from low‐grade metamorphic Grenvillian‐Avalonian terranes and recycling of older Palaeozoic sedimentary rocks uplifted as part of the Alleghanian orogen and Archean‐Superior‐Province. Immature sediments, including lithic sandstone bodies, were deposited within a SE‐NW oriented transverse drainage system. Quartzarenites were deposited within a strike‐parallel NE‐SW oriented axial drainage, forming elongate belts along the western basin margin. These mature quartzarenites were deposited within a braided fluvial system that originated from a northerly cratonic source area. Integrating subsurface and sandstone provenance data indicates significant, repeated palaeogeographical shifts in alluvial facies distribution. Distinct wedges comprising composite sequences are bounded by successive shifts in alluvial facies and define three low‐frequency tectonic accommodation cycles. The proposed tectonic accommodation cycles provide an explanation for the recognized low‐frequency composite sequences, defining short‐term episodes of unsteady westward migration of the flexural Appalachian Basin and constrain the relative timing of deformation events during cratonward progression of the Alleghanian orogenic wedge.  相似文献   
20.
High-resolution paleohydrological reconstructions were carried out in five shallow lakes in the Nebraska Sand Hills across an east–west transect in order to 1) determine whether long-term droughts of the past 4000 years were spatially and temporally coherent across the region, 2) distinguish local variation in climate or hydrology from regional patterns of change, and 3) compare the paleolimnological results with the existing dune-inferred drought records. Diatom-inferred lake-level was reconstructed for all sites and compared with other regional records. Alterations between high and low lake-levels were frequent during the past 4000 years, which suggests that shifts between dry and wet periods were prevalent across the Sand Hills. Extended multi-decadal to centennial-scale droughts were more common prior to 2000 years BP, while the last two millennia were hydrologically more variable and climate conditions alternated on shorter timescales. Despite some discrepancies among the five records, the paleohydrological reconstructions refine the Holocene drought history of the Nebraska Sand Hills, particularly between ~2200 and 4000 cal a BP. Many of the observed drought events are contemporaneous with severe droughts documented at sites in the northern Great Plains and Rocky Mountains, lending support for the severity and regional significance of these events in western North America.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号