首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   391篇
  免费   21篇
  国内免费   5篇
测绘学   14篇
大气科学   38篇
地球物理   88篇
地质学   153篇
海洋学   34篇
天文学   38篇
综合类   2篇
自然地理   50篇
  2021年   3篇
  2020年   3篇
  2019年   17篇
  2018年   10篇
  2017年   11篇
  2016年   11篇
  2015年   13篇
  2014年   14篇
  2013年   22篇
  2012年   12篇
  2011年   22篇
  2010年   9篇
  2009年   12篇
  2008年   13篇
  2007年   13篇
  2006年   12篇
  2005年   11篇
  2004年   16篇
  2003年   16篇
  2002年   12篇
  2001年   7篇
  2000年   5篇
  1999年   5篇
  1998年   8篇
  1997年   10篇
  1996年   6篇
  1995年   5篇
  1993年   3篇
  1992年   3篇
  1991年   4篇
  1990年   3篇
  1989年   4篇
  1988年   3篇
  1986年   2篇
  1985年   13篇
  1984年   5篇
  1983年   9篇
  1982年   7篇
  1981年   8篇
  1980年   4篇
  1979年   7篇
  1978年   3篇
  1977年   2篇
  1976年   5篇
  1975年   4篇
  1974年   4篇
  1973年   6篇
  1972年   2篇
  1968年   2篇
  1967年   2篇
排序方式: 共有417条查询结果,搜索用时 0 毫秒
331.
The spatial resolution attributed to digital cameras is usually based on the number or size of the pixels in the sensor. On closer examination it can often be shown that the real limit to the level of detail recorded by a camera will in practice be due to the performance of the optical system. An example of how this happens is given with a comparison between two satellite camera systems.  相似文献   
332.
We tested the ability of pollution induced community tolerance (PICT) to detect the effects of chronic metal pollution on estuarine sediment microbial communities, along a gradient spanning two orders of magnitude in metal concentrations. In tandem, we investigated the associated microbial community structure using terminal restriction fragment length polymorphism (T-RFLP). Tolerance of microbes to Cu, measured as IC50 (inhibitory concentration 50%), was strongly correlated with pore water Cu concentration (r(2)=0.842). No strong correlation existed for other metals tested, highlighting the ability of PICT to identify the pollutant causing a toxic effect. There was no correlation between microbial community structure and community tolerance to metals tested, but analysis of community structure did provide some information on reasons for observed PICT response. PICT methodology used here provided a greater strength and consistency of association with pollutant concentration compared to microbial community structure and can be recommended as a sensitive indicator of metal pollution on estuarine sediment microbial communities.  相似文献   
333.
Preferential flowpaths transport phosphorus (P) to agricultural tile drains. However, if and to what extent this may vary with soil texture, moisture conditions, and P placement is poorly understood. This study investigated (a) interactions between soil texture, antecedent moisture conditions, and the relative contributions of matrix and preferential flow and (b) associated P distributions through the soil profile when fertilizers were applied to the surface or subsurface. Brilliant blue dye was used to stain subsurface flowpaths in clay and silt loam plots during simulated rainfall events under wet and dry conditions. Fertilizer P was applied to the surface or via subsurface placement to plots of different soil texture and moisture condition. Photographs of dye stains were analysed to classify the flow patterns as matrix dominated or macropore dominated, and soils within plots were analysed for their water‐extractable P (WEP) content. Preferential flow occurred under all soil texture and moisture conditions. Dye penetrated deeper into clay soils via macropores and had lower interaction with the soil matrix, compared with silt loam soil. Moisture conditions influenced preferential flowpaths in clay, with dry clay having deeper infiltration (92 ± 7.6 cm) and less dye–matrix interaction than wet clay (77 ± 4.7 cm). Depth of staining did not differ between wet (56 ± 7.2 cm) and dry (50 ± 6.6 cm) silt loam, nor did dominant flowpaths. WEP distribution in the top 10 cm of the soil profile differed with fertilizer placement, but no differences in soil WEP were observed at depth. These results demonstrate that large rainfall events following drought conditions in clay soil may be prone to rapid P transport to tile drains due to increased preferential flow, whereas flow in silt loams is less affected by antecedent moisture. Subsurface placement of fertilizer may minimize the risk of subsurface P transport, particularily in clay.  相似文献   
334.
This paper describes the first attempt to infer ocean currents from the shapes of seismic streamers using real data. It demonstrates that it is feasible to infer the ocean currents, using a total least‐squares solution at each shotpoint, when there is no lateral steering. There are some artefacts in the inferred currents when there is lateral steering; this is believed to be caused by errors in estimating the streamer velocity. This paper describes the residual equations that form the cost function and discusses how to choose weights in the cost function based on physical criteria. Correctly choosing weights is something of an art and requires further research to make automatic and robust.  相似文献   
335.
Connectivity describes the efficiency of material transfer between geomorphic system components such as hillslopes and rivers or longitudinal segments within a river network. Representations of geomorphic systems as networks should recognize that the compartments, links, and nodes exhibit connectivity at differing scales. The historical underpinnings of connectivity in geomorphology involve management of geomorphic systems and observations linking surface processes to landform dynamics. Current work in geomorphic connectivity emphasizes hydrological, sediment, or landscape connectivity. Signatures of connectivity can be detected using diverse indicators that vary from contemporary processes to stratigraphic records or a spatial metric such as sediment yield that encompasses geomorphic processes operating over diverse time and space scales. One approach to measuring connectivity is to determine the fundamental temporal and spatial scales for the phenomenon of interest and to make measurements at a sufficiently large multiple of the fundamental scales to capture reliably a representative sample. Another approach seeks to characterize how connectivity varies with scale, by applying the same metric over a wide range of scales or using statistical measures that characterize the frequency distributions of connectivity across scales. Identifying and measuring connectivity is useful in basic and applied geomorphic research and we explore the implications of connectivity for river management. Common themes and ideas that merit further research include; increased understanding of the importance of capturing landscape heterogeneity and connectivity patterns; the potential to use graph and network theory metrics in analyzing connectivity; the need to understand which metrics best represent the physical system and its connectivity pathways, and to apply these metrics to the validation of numerical models; and the need to recognize the importance of low levels of connectivity in some situations. We emphasize the value in evaluating boundaries between components of geomorphic systems as transition zones and examining the fluxes across them to understand landscape functioning. © 2018 John Wiley & Sons, Ltd.  相似文献   
336.
The second half of the Ediacaran period began with a large impact e the Acraman impact in South Australia, which was accompanied by a negative d13Ccarb anomaly and an extinction-radiation event involvi...  相似文献   
337.
Despite improvements in understanding biophysical response to climate change, a better understanding of how such changes will affect societies is still needed. We evaluated effects of climate change on the coupled human-environmental system of the McKenzie River watershed in the Oregon Cascades in order to assess its vulnerability. Published empirical and modeling results indicate that climate change will alter both the timing and quantity of streamflow, but understanding how these changes will impact different water users is essential to facilitate adaptation to changing conditions. In order to better understand the vulnerability of four water use sectors to changing streamflow, we conducted a series of semi-structured interviews with representatives of each sector, in which we presented projected changes in streamflow and asked respondents to assess how changing water availability would impact their activities. In the McKenzie River watershed, there are distinct spatial and temporal patterns associated with sensitivity of water resources to climate change. This research illustrates that the implications of changing streamflow vary substantially among different water users, with vulnerabilities being determined in part by the spatial scale and timing of water use and the flexibility of those uses in time and space. Furthermore, institutions within some sectors were found to be better positioned to effectively respond to changes in water resources associated with climate change, while others have substantial barriers to the flexibility needed to manage for new conditions. A clearer understanding of these opportunities and constraints across water use sectors can provide a basis for improving response capacity and potentially reducing vulnerability to changing water resources in the region.  相似文献   
338.
Over the last century, geomorphic processes along the Middle Rio Grande have been altered by flood control and bank stabilization projects, intensified land and water use, and climate change. In response to potential risks to infrastructure and ecological integrity, recent (1985–2008) adjustment was investigated and historic (1918–1985) changes in Rio Grande channel planform through the Albuquerque, New Mexico, area were reviewed, especially in relation to changes in annual peak discharge and river engineering measures. Using a GIS, channel characteristics were digitized from georeferenced photographs and analyzed with particular attention to quantifying potential measurement error and its propagation. Error associated with average channel widths and channel area ranged between 4 and 13%. For smaller polygons, e.g. islands, error was higher (11 to 40% for width and >200% for area) because width error is large relative to polygon width. Between 1918 and 1963, average channel widths decreased 8 m/yr, from 516 ± 67 m to 176 ± 7 m, mostly due to decreasing peak flows and the implementation of flood control and other engineering measures. From 1985 to 2008, widths decreased 0·7 m/yr, from 176 ± 23 m to 146 ± 5 m, accompanied by an increase in vegetated island area which largely coincided with low flow periods. Narrowing was concentrated at tributary inputs and in the upstream part of the reach, where bedload trapping by Cochiti Dam has caused degradation. Bank protection structures and dense vegetation limit bank erosion in the reach, but erosion is significant where expanding islands, incision, and increased meandering force water against banks. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
339.
Proper characterizations of background soil CO2 respiration rates are critical for interpreting CO2 leakage monitoring results at geologic sequestration sites. In this paper, a method is developed for determining temperature-dependent critical values of soil CO2 flux for preliminary leak detection inference. The method is illustrated using surface CO2 flux measurements obtained from the AmeriFlux network fit with alternative models for the soil CO2 flux versus soil temperature relationship. The models are fit first to determine pooled parameter estimates across the sites, then using a Bayesian hierarchical method to obtain both global and site-specific parameter estimates. Model comparisons are made using the deviance information criterion (DIC), which considers both goodness of fit and model complexity. The hierarchical models consistently outperform the corresponding pooled models, demonstrating the need for site-specific data and estimates when determining relationships for background soil respiration. A hierarchical model that relates the square root of the CO2 flux to a quadratic function of soil temperature is found to provide the best fit for the AmeriFlux sites among the models tested. This model also yields effective prediction intervals, consistent with the upper envelope of the flux data across the modeled sites and temperature ranges. Calculation of upper prediction intervals using the proposed method can provide a basis for setting critical values in CO2 leak detection monitoring at sequestration sites.  相似文献   
340.
We compare the results from the application of four different methods to determine the speed of meteoroids from single station radar data. The methods used are the pre-t 0 amplitude, post-t 0 amplitude, pre-t 0 phase and the Fresnel transform (FT) methods. Speeds from the first three methods are compared to the FT method since, requiring the use of the entire records of both the amplitude and phase data, this method is the most accurate of the four.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号