首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   391篇
  免费   21篇
  国内免费   5篇
测绘学   14篇
大气科学   38篇
地球物理   88篇
地质学   153篇
海洋学   34篇
天文学   38篇
综合类   2篇
自然地理   50篇
  2021年   3篇
  2020年   3篇
  2019年   17篇
  2018年   10篇
  2017年   11篇
  2016年   11篇
  2015年   13篇
  2014年   14篇
  2013年   22篇
  2012年   12篇
  2011年   22篇
  2010年   9篇
  2009年   12篇
  2008年   13篇
  2007年   13篇
  2006年   12篇
  2005年   11篇
  2004年   16篇
  2003年   16篇
  2002年   12篇
  2001年   7篇
  2000年   5篇
  1999年   5篇
  1998年   8篇
  1997年   10篇
  1996年   6篇
  1995年   5篇
  1993年   3篇
  1992年   3篇
  1991年   4篇
  1990年   3篇
  1989年   4篇
  1988年   3篇
  1986年   2篇
  1985年   13篇
  1984年   5篇
  1983年   9篇
  1982年   7篇
  1981年   8篇
  1980年   4篇
  1979年   7篇
  1978年   3篇
  1977年   2篇
  1976年   5篇
  1975年   4篇
  1974年   4篇
  1973年   6篇
  1972年   2篇
  1968年   2篇
  1967年   2篇
排序方式: 共有417条查询结果,搜索用时 296 毫秒
181.
Mid-Cretaceous strata within the Tintina Trench.3 km west of the community of Ross River, contain evidence of deposition in two distinct,alternating,fluvial settings.Coal-bearing,mud-dominated strata are commonly associated with high-constructive sandy channel systems,with extensive overbank. levee and splay deposits.Channels are between 3 and 30 m wide and 0.4-7 m thick.They show repetitive development of side and in-channel bar-forms,as well as up-channel widening of the rivers by selective erosion of associated overbank and levee deposits.Levees extended for several hundred metres away from the channels.In this setting low-angle inclined stratification and epsilon cross stratification may reflect lateral migration of crevasse channels or small streams.The paucity of exposure prevents recognition of the channels as products of multiple channel anastomosed systems or single channel high-constructive systems. Gravel-dominated strata,inter-bedded with,and overlying coal-bearing units,are interpreted as deposits of wandering gravel-bed rivers,with sinuosity approaching 1.4.In most exposures they appear to be dominated by massive and thin planar-bedded granule to small pebble conglomerates,which would traditionally be interpreted as sheet-flood or longitudinal bar deposits of a high-gradient braided stream or alluvial fan.Architectural analysis of exposures in an open-pit shows that the predominance of flat bedding is an artefact of the geometry of the roadside exposures.In the pit the conglomerates are dominated by large scale cross stratification on a scale of 1-5.5 m.These appear to have developed as downstream and lateral accretion elements on side-bars and on in-channel bars in water depths of 2-12 m.Stacking of strata on domed 3rd order surfaces suggests development of longitudinal in-channel bar complexes similar to those observed in parts of the modern Rhone River system.Mudstone preserved in some of the channels reflects intervals of channel abandonment or avulsion.Minimum channel width is from 70 to 450 m.  相似文献   
182.
183.
The precipitation fields of a palaeoatmospheric general circulation model are used to derive estimates of the geographical distribution, and flux, of icebergs from the Laurentide, Fennoscandinavian and eastern Siberian ice‐sheets at the Last Glacial Maximum (LGM). The atmospheric model fields from LGM simulations using CLIMAP or Peltier (ICE‐4G) ice orography were studied, to test the sensitivity of the predicted flux. The estimated Northern Hemispheric LGM iceberg flux is 3500–4000 km3 yr?1, of which about 60% issued directly into the North Atlantic. The iceberg flux from the St Lawrence area is of similar significance to that issuing from Hudson Strait in all estimates. Both the North Pacific and the Arctic received substantial iceberg fluxes (ca. 700 km3 yr?1), with relatively minor differences occurring between the two ice‐sheet reconstructions. Apparent discrepancies between Arctic deep‐sea core samples of ice‐rafted debris and our estimates of mean glacial iceberg flux may be ascribed to coastal trapping of bergs, the existence of floating ice tongues or a rapid exit of icebergs from the Arctic basin into the Greenland Sea through the Fram Strait. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
184.
Three 40-member ensemble experiments and a 700?year control run are used to study initial value predictability in the North Pacific in Community Climate System Model version 3 (CCSM3). Our focus is on the leading two empirical orthogonal functions (EOFs) of subsurface temperature variability, which together produce an eastward propagating mode. Predictability is measured by relative entropy, which compares both the mean and spread of predictions of ensembles to the model??s climatological distribution of states. Despite the fact that EOF1, which is structurally similar to the observational Pacific Decadal Oscillation (PDO), has pronounced spectral peaks on decadal time scales, its predictability is less than 6?years. Additional predictability resides in the tendency of EOF1 to evolve to EOF2, primarily through simple advective processes. The propagating mode represented by the combination of EOF1 and EOF2 is predictable for about a decade. Information in both the mean and spread of predicted ensembles contribute to this predictability. Among the leading 15 EOFs, EOF1 is the least predictable mode in terms of the rate at which the corresponding principal component disperses in the ensemble experiments. However, it can produce enhanced predictability of the whole system by inducing EOF2, which is one of the two EOFs with the slowest dispersion rate. The first two EOFs can also enhance the ensemble mean (or ??signal??) component of predictability of the entire system. For typical amplitude initial states, this component contributes to predictability for about 6?years. For initial states with unusually high amplitude projections onto these two EOFs, this contribution can last much longer. The major findings from the three ensemble experiments are replicated and generalized when the initial condition predictability for each of many hundreds of different initial states is estimated. These estimates are derived from the behavior of a linear inverse model (LIM) that is based on the intrinsic variability present in the control run.  相似文献   
185.
The Ambassador U and multi-element deposit occurs on the SW margin of the Gunbarrel Basin, Western Australia. Low-grade, flat-lying U mineralization averaging about 2 m thick at 0.03% U occurs in lignites at the redox front at the base of the weathering profile within a laterally extensive palaeochannel network. Uranium is principally associated with organic matter within the lignitic matrix, although rare discrete U minerals, such as coffinite and uraninite, are also present. The lignite is also enriched in a suite of other elements, principally base metals and sulphur, with concentrations of 0.3 ≥ 1% Cu, Pb, Ni, Co, Zn and total rare earth elements (REE) in some samples. Other element enrichments include: Cr, Cs, Sc, Se, Ta, Ti, Th, V and Zr as detrital heavy minerals of Zr, Ti and REE (oxides and silicates) or authigenic minerals of Cu, Bi, Pb, Zn, Ni, Se, Hg, Ti, Cr, Tl, V, U and REE (sulphides, vanadates, selenides, oxides, chlorides and native metals) and diffuse lignite impregnations. The Ambassador deposit probably formed from the convergence of redox-active weathering processes to unique source/host rocks, constrained within the palaeochannel. A proximal source of U and trace elements of lamproite/carbonatite origin is probable, as constrained by U–Pb isotope and U–Th disequilibria studies. Uranium and other metals were precipitated syngenetically with organic matter as it was deposited during a humid phase in the Late Eocene. Remobilization subsequently concentrated the metals in the upper 2 m of the lignite. This may have occurred during one or more periods of weathering and associated diagenesis, with the latest episode in the last 300,000 years.  相似文献   
186.
Temperature measurements have been used by a variety of researchers to gain insight into groundwater discharge patterns. However, much of this research has reduced the problem to heat and fluid flow in one dimension for ease of analysis. This approach is seemingly at odds with the goal of determining spatial variability in specific discharge, which implies that the temperature field will vary in more than one dimension. However, it is unclear how important the resulting discrepancies are in the context of determining groundwater discharge to surface water bodies. In this study, the importance of these variations is examined by testing two popular one‐dimensional analytical solutions with stochastic models of heat and fluid flow in a two‐dimensional porous medium. For cases with low degrees of heterogeneity in hydraulic conductivity, acceptable results are possible for specific discharges between 10?7 and 10?5 m/s. However, conduction into areas with specific discharges less than 10?7 m/s from adjacent areas can lead to significant errors. In some of these cases, the one‐dimensional solutions produced estimates of specific discharge of nearly 10?6 m/s. This phenomenon is more likely in situations with greater degrees of heterogeneity.  相似文献   
187.

Background  

Standing dead trees are one component of forest ecosystem dead wood carbon (C) pools, whose national stock is estimated by the U.S. as required by the United Nations Framework Convention on Climate Change. Historically, standing dead tree C has been estimated as a function of live tree growing stock volume in the U.S.'s National Greenhouse Gas Inventory. Initiated in 1998, the USDA Forest Service's Forest Inventory and Analysis program (responsible for compiling the Nation's forest C estimates) began consistent nationwide sampling of standing dead trees, which may now supplant previous purely model-based approaches to standing dead biomass and C stock estimation. A substantial hurdle to estimating standing dead tree biomass and C attributes is that traditional estimation procedures are based on merchantability paradigms that may not reflect density reductions or structural loss due to decomposition common in standing dead trees. The goal of this study was to incorporate standing dead tree adjustments into the current estimation procedures and assess how biomass and C stocks change at multiple spatial scales.  相似文献   
188.
Near the beginning and end of the Proterozoic Eon (2.5 Ga–542 Ma) the Earth went through dramatic climatic perturbations. The Palaeoproterozoic (Huronian) glaciations are best known from the Canadian Shield where there is evidence of at least three such episodes. Glacial deposits of comparable age are also known from Fennoscandia, South Africa and Western Australia. In the type area, the Huronian glacial deposits are preserved in an ancient rift system that preceded break‐up of the supercraton, Kenorland, whereas those in the southern hemisphere may have been deposited in a foreland basin setting. Detailed correlations between the two hemispheres must await more geochronological data. Following a long period (~1.5 Ga) with little evidence of glaciation, the climatic upheavals of the Neoproterozoic Era began. The two most widespread glacial events are known as the Sturtian and Marinoan. The Neoproterozoic glaciations also took place on a supercontinent (Rodinia). Some were accompanied by unexpected rock types such as dolomitic cap carbonates and iron formations, both of which show evidence of hydrothermal influence. Major influences on surface temperatures on Earth include solar luminosity (increasing throughout geological history) and the concentration of atmospheric greenhouse gases such as CO2 (generally diminishing with time). It is suggested that the two great Proterozoic climatic oscillation periods resulted from perturbations of the balance between these two variables, triggered by drawdown of atmospheric CO2 during intensive weathering of supercontinents. A weathering‐related negative feedback loop resulted in multiple glaciations with intervening warm periods. Climatic stability only returned after the supercontinent broke apart and reduced continental freeboard moderated continental weathering. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
189.
We performed in situ infrared spectroscopic measurements of OH bands in a forsterite single crystal between ?194 and 200 °C. The crystal was synthesized at 2 GPa from a cooling experiment performed between 1,400 and 1,275 °C at a rate of 1 °C per hour under high silica-activity conditions. Twenty-four individual bands were identified at low temperature. Three different groups can be distinguished: (1) Most of the OH bands between 3,300 and 3,650 cm?1 display a small frequency lowering (<4 cm?1) and a moderate broadening (<10 cm?1) as temperature is increased from ?194 to 200 °C. The behaviour of these bands is compatible with weakly H-bonded OH groups associated with hydrogen substitution into silicon tetrahedra; (2) In the same frequency range, two bands at 3,617 and 3,566 cm?1 display a significantly anharmonic behaviour with stronger frequency lowering (42 and 27 cm?1 respectively) and broadening (~30 cm?1) with increasing temperature. It is tentatively proposed that the defects responsible for these OH bands correspond to H atoms in interstitial position; (3) In the frequency region between 3,300 and 3,000 cm?1, three broad bands are identified at 3,151, 3,178 and 3,217 cm?1, at ?194 °C. They exhibit significant frequency increase (~20 cm?1) and broadening (~70 cm?1) with increasing temperature, indicating moderate H bonding. These bands are compatible with (2H)Mg defects. A survey of published spectra of forsterite samples synthesized above 5 GPa shows that about 75 % of the incorporated hydrogen belongs to type (1) OH bands associated with Si substitution and 25 % to the broad band at 3,566 cm?1 (type (2); 3,550 cm?1 at room temperature). The contribution of OH bands of type (3), associated to (2H)Mg defects, is negligible. Therefore, solubility of hydrogen in forsterite (and natural olivine compositions) cannot be described by a single solubility law, but by the combination of at least two laws, with different activation volumes and water fugacity exponents.  相似文献   
190.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号