首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   196篇
  免费   6篇
  国内免费   8篇
测绘学   23篇
大气科学   50篇
地球物理   28篇
地质学   51篇
海洋学   6篇
天文学   50篇
综合类   2篇
  2022年   1篇
  2021年   4篇
  2020年   2篇
  2019年   3篇
  2018年   4篇
  2017年   17篇
  2016年   8篇
  2015年   4篇
  2014年   14篇
  2013年   7篇
  2012年   9篇
  2011年   8篇
  2010年   11篇
  2009年   11篇
  2008年   10篇
  2007年   6篇
  2006年   6篇
  2005年   6篇
  2004年   7篇
  2003年   4篇
  2002年   3篇
  2001年   2篇
  2000年   3篇
  1999年   5篇
  1998年   4篇
  1997年   3篇
  1996年   1篇
  1995年   8篇
  1994年   1篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1980年   6篇
  1979年   1篇
  1977年   2篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有210条查询结果,搜索用时 864 毫秒
121.
Canadian contributions to International Polar Year (IPY) 2007?C2008 were designed to improve the understanding of climate change impacts and adaptation and to gain insight into issues surrounding community health and well-being in Canada??s arctic. Fifty-two research projects, involving scientists, northern partners and communities, focused on the arctic atmosphere and climate, cryosphere, oceans, sea ice, marine ecosystems, terrestrial ecosystems, wildlife as well as human health and community well-being. Key research findings on these topics are presented in this special issue of Climatic Change. This introductory paper presents an overview of the international and Canadian IPY programs and a summary of Canadian IPY results, including progress made in data management and capacity building. The legacy of IPY in Canada includes expanded international scientific cooperation, meaningful partnerships with northern communities, and more northern residents with research training.  相似文献   
122.
Weakening of Indian summer monsoon rainfall in warming environment   总被引:1,自引:1,他引:0  
Though over a century long period (1871–2010) the Indian summer monsoon rainfall (ISMR) series is stable, it does depict the decreasing tendency during the last three decades of the 20th century. Around mid-1970s, there was a major climate shift over the globe. The average all-India surface air temperature also shows consistent rise after 1975. This unequivocal warming may have some impact on the weakening of ISMR. The reduction in seasonal rainfall is mainly contributed by the deficit rainfall over core monsoon zone which happens to be the major contributor to seasonal rainfall amount. During the period 1976–2004, the deficit (excess) monsoons have become more (less) frequent. The monsoon circulation is observed to be weakened. The mid-tropospheric gradient responsible for the maintenance of monsoon circulation has been observed to be weakened significantly as compared to 1901–1975. The warming over western equatorial Indian Ocean as well as equatorial Pacific is more pronounced after mid-70s and the co-occurrence of positive Indian Ocean Dipole Mode events and El Nino events might have reinforced the large deficit anomalies of Indian summer monsoon rainfall during 1976–2004. All these factors may contribute to the weakening of ISMR.  相似文献   
123.
Preparation of a generalized chart of probable maximum precipitation (PMP) for the southern half of the Indian peninsula lying between lat. 8°N to 16°N has been attempted in this study. Maximum 1-day rainfall data of 70 to 80 years from 1891 for about 600 stations in the peninsular states of Tamil Nadu, Kerala, South Karnataka and southern portions of Andhra Pradesh were used. In order to get appropriate values of PMP, envelope frequency factor (K m) curve based on the actual rainfall data of the region was prepared. This study has shown that one-day PMP estimates over this region range from about 25 cm to about 85 cm. The heavy rainfall received over the coastal areas of Tamil Nadu in association with the cyclonic disturbance of November 1976 was examined and it was found that this rainfall was nowhere near the PMP estimates for this area.  相似文献   
124.
Indian Monsoon Variability in a Global Warming Scenario   总被引:4,自引:0,他引:4  
The Intergovernmental Panel on Climate Change (IPCC) constituted by the World Meteorological Organisation provides expert guidance regarding scientific and technical aspects of the climate problem. Since 1990 IPCC has, at five-yearlyintervals, assessedand reported on the current state of knowledge and understanding of the climate issue. These reports have projected the behaviour of the Asian monsoon in the warming world. While the IPCC Second Assessment Report (IPCC, 1996) on climate model projections of Asian/Indian monsoon stated ``Most climate models produce more rainfall over South Asia in a warmer climate with increasing CO2', the recent IPCC (2001) Third Assessment Report states ``It is likely that the warming associated with increasing greenhouse gas concentrations will cause an increase in Asian summer monsoon variability and changes in monsoon strength.'Climate model projections(IPCC, 2001) also suggest more El Niño – like events in the tropical Pacific, increase in surface temperatures and decrease in the northern hemisphere snow cover. The Indian Monsoon is an important component of the Asian monsoon and its links with the El Niño Southern Oscillation (ENSO) phenomenon, northern hemisphere surface temperature and Eurasian snow are well documented.In the light of the IPCC globalwarming projections on the Asian monsoon, the interannual and decadal variability in summer monsoon rainfall over India and its teleconnections have been examined by using observed data for the 131-year (1871–2001) period. While the interannual variations showyear-to-year random fluctuations, thedecadal variations reveal distinct alternate epochs of above and below normal rainfall. The epochs tend to last for about three decades. There is no clear evidence to suggest that the strength and variability of the Indian Monsoon Rainfall (IMR) nor the epochal changes are affected by the global warming. Though the 1990s have been the warmest decade of the millennium(IPCC, 2001), the IMR variability has decreased drastically.Connections between the ENSO phenomenon, Northern Hemisphere surface temperature and the Eurasian snow with IMR reveal that the correlations are not only weak but have changed signs in the early 1990s suggesting that the IMR has delinked not only with the Pacific but with the Northern Hemisphere/Eurasian continent also. The fact that temperature/snow relationships with IMR are weak further suggests that global warming need not be a cause for the recent ENSO-Monsoon weakening.Observed snow depth over theEurasian continent has been increasing, which could be a result of enhanced precipitation due to the global warming.  相似文献   
125.
Snow is highly reflective in the visible region of the electromagnetic spectrum making it possible to easily distinguish on a satellite image. However, cloud cover and mountain shadows pose a serious problem in the identification of snow in a mountainous region. Therefore, to identify snow in such an environment, a Normalized Difference Snow Index (NDSI) has been applied. The NDSI is based on the high reflectance of snow in the visible region and its low reflectance in the SWIR region, whereas, reflectance of cloud remains high compared to snow in the SWIR region. Efforts have been made to carry out field observations on reflectance of various land features near Manali in Himachal Pradesh (HP) to develop NDSI values for identifying snow. Field data have been collected using three field radiometers, viz., Multi-band Ground Truth Radiometer (GTR) operating in the 12 spectral bands ranging from visible to near-infrared wavelengths, Near-Infrared Ground Truth Radiometer (NIGTR) operating in the SWIR range, and Ratio-Radiometer (RR) operating in two spectral bands, one in the visible range, and another band in the SWIR range. All these three field radiometers have been designed and developed indigenously at the Space Applications Centre (ISRO), Ahmedabad. NDSI values for all types of snow, such as, fresh, clear, patchy and wet, have been found to be in the range 0.9 to 0.96. In addition, the NDSI value for snow under mountain shadow is found to be more than 0.9. This suggests the use of NDSI method for snow cover monitoring under mountain shadow. NDSI values for other land features such as soil, vegetation, and rock were substantially different than snow. However, water bodies have NDSI values close to snow and they need to be masked during snow cover delineation using NIR band.  相似文献   
126.
The role of hydrogeomorphological units and lineaments in the storage of groundwater from the Muvattupuzha river basin has been investigated using IRS ID LISS III data. Other than the usual water bodies such as river course, reservoirs and ponds, the major hydrogeomorphological units identified in this basin in the descending order of their groundwater potential are: valley fills, moderately dissected plateau, pediments, residual mounts, residual mount complex, linear ridges, residual hills and structural hills. Majority of the lineaments trends in NW-SE and WNW-ESE directions. Even though the eastern part of the basin is characterised by moderate to high lineament density, the above area is found to be poor to moderate groundwater prospect zone because of high gradient and structural hills. The pump test analyses of dug wells from different hydrogeomorphic units also confirm that valley fills are the most promising unit for groundwater prospecting than the rest.  相似文献   
127.
An attempt has been made to study variations in the glacier extent over a period of time using digital elevation model (DEM) and orthoimages derived from IRS-1C PAN stereo pairs of 1997–98 and topographical map surveyed during 1962–63. DEM and orthoimages have been generated using integrated software developed for processing of IRSIC/ID panchromatic stereo data using the softcopy photogrammetric workstation. Case studies of two glaciers, i.e. the Janapa garang and Shaune garang glaciers of the Basapa basin, a sub-basin of Satluj River in India, have been presented here. Generation of DEM has been followed by the estimation of its accuracy. PAN images were interpreted for identification of the snout of the glaciers. The geographical locations of the snouts on the images were compared with the location as mapped on the topographical map of the study area. To verify satellite observations, field investigations were carried out at Shaune garang glacier area. The Janapa garang and the Shaune garang are observed to have retreat of 596m and 923 m respectively. Reduction in the thickness of ice in the deglaciated part of the Shaune garang glacier was estimated on the basis of change in the elevations of the glacial surface from 1963 to 1998.  相似文献   
128.
A theoretical study has been made to see the influence of microwave frequency, soil moisture, soil texture and soil temperature on penetration depth in the context of microwave remote sensing. The results are presented in the form of figures and also coefficients of least square fitting. The study reveals that there is a definite dependence of penetration depth on the above parameters. The range of penetration depth has been found to be 0 to 10 cms and varies as a function of several parameters. These results are in agreement with experimental observations.  相似文献   
129.
Summary The Almatti dam is the major engineering feature in the development of water resources in the Upper Krishna river forming a storage reservoir of 6425 million m3 at spillway crest level. In this paper, the design storm rainfalls for different return periods and also the Probable Maximum Precipitation (PMP) for the catchment above Almatti dam have been estimated to review the adequacy of the flood spillway design for the dam. The design storm rainfalls of various return periods have been computed from a statistical analysis of point and areal time series of annual maximum rainfall. In evaluating the PMP, the maximum observed rainfall obtained by Depth Duration method were maximized as the orography of the Western Ghats plays profound influence over the catchment. It was found that (area 35925 km2) the highest areal rainfalls over the catchment were 14.0 cm, 21.5 cm and 24.6 cm in 1, 2 and 3-day durations, respectively. These are scaled up by a factor of 1.23 to obtain the PMP rainfalls. The areal PMP estimates for the upper Krishna River (UKR) catchment above Almatti dam have been found to be 18.0 cm, 27.0 cm and 31.0 cm, respectively.With 6 Figures  相似文献   
130.
The extremely energetic ( approximately 10-4 ergs cm-2) gamma-ray burst (GRB) of 1999 December 8 was triangulated to an approximately 14 arcmin2 error box approximately 1.8 days after its arrival at Earth with the third interplanetary network (IPN), which consists of the Ulysses, Near-Earth Asteroid Rendezvous, and Wind spacecraft. Radio observations with the Very Large Array approximately 2.7 days after the burst revealed a bright fading counterpart whose position is consistent with that of an optical transient source with a redshift of 0.707. We present the time history, peak flux, fluence, and refined 1.3 arcmin2 error box of this event and discuss its energetics. This is the first time that a counterpart has been found for a GRB localized only by the IPN.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号