首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   10篇
  国内免费   1篇
测绘学   7篇
大气科学   4篇
地球物理   41篇
地质学   54篇
海洋学   6篇
天文学   13篇
自然地理   2篇
  2023年   1篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2018年   5篇
  2017年   7篇
  2016年   6篇
  2015年   9篇
  2014年   8篇
  2013年   5篇
  2012年   6篇
  2011年   10篇
  2010年   8篇
  2009年   11篇
  2008年   9篇
  2007年   6篇
  2006年   5篇
  2005年   8篇
  2004年   2篇
  2003年   5篇
  2002年   2篇
  2001年   2篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
排序方式: 共有127条查询结果,搜索用时 156 毫秒
121.
122.
Among the potential effects of climate change on subalpine forest ecosystems during the winter season, the shift in snowline towards higher altitudes and the increase in frequency of rain events on the snowpack are of particular interest. Here, we present the results of a 2‐year field experiment conducted in a forest stand (Larix decidua) in NW Italy at 2020 m a.s.l. From 2009 to 2011, we monitored soil physical characteristics (temperature and moisture), and soil and soil solution chemistry, in particular carbon (C) and nitrogen (N) forms and their change in time, as affected by simulated late snowpack accumulation and rain on snow events. Late snowpack accumulation determined a stronger effect on soil thermal and moisture regimes than rain on snow events. Also soil chemistry was significantly affected by late snowfall simulation. Although microbial biomass C and N were not reduced by soil freezing, soil contents of the more labile dissolved organic carbon and inorganic N increased when the soil was affected by mild/hard freezing. Variations in the soil solution were shifted with respect to those observed in soil, with an increase in N‐NO3? concentrations occurring during spring and summer. This study highlights the potential N loss in subalpine soils under changing environmental conditions driven by a changing climate. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
123.
124.
125.
126.
In this contribution we show that natural fracture/conduit networks can be studied by using a new method based on Graph Theory. A number of natural networks at different length scales (from the meter to the millimeter) are analysed and results show that they have typical attributes of ‘small-world’ networks, a special class of networks characterized by high global and local transport efficiency. To our knowledge, this topological feature of natural fracture networks is recognized here for the first time. By starting from results on natural fracture/conduit networks, the possible implications are discussed by focusing on disequilibrium transport of magmas in the upper mantle beneath mid-ocean ridges. Results indicate that the ‘small-world’ topology of natural fracture/conduit networks is an important characteristic to ensure disequilibrium delivery of melts through the upper mantle, thus offering a good explanation of geochemical features of magmas. The remarkable point here is that the modelling of melt migration has been constrained by using real fracture network systems. The results presented in this work may contribute to a better understanding of melt migration in fracture network systems and of the way geochemical features of magmas may be influenced by their transport history.  相似文献   
127.
In recent years, the high incidence of harmful health effects through inhalation of airborne asbestos from amphibole-bearing rock mélanges has been thoroughly documented. Here, we present a field-based, multi-scale geological approach aimed at illustrating the occurrence of amphibole fibrous mineralisation in an ophiolitic suite from the Ligurian Alps (Italy) and discussing the implication on in situ determination of the asbestos hazard. The rock mélange is composed of plurimetre-sized blocks of different lithotypes (metagabbro, serpentinite, chloritoschist) juxtaposed by the meaning of tectonic structures. The geological-structural survey revealed that the fibrous mineralisation is localised in specific structural sites of the rock volume, including veins and schistosity. Both micro-chemical and crystal structure analyses on selected fibrous samples revealed that actinolite fibres grow in veins within the metagabbro and in chloritoschists, while fibrous tremolite occurs in serpentinite schistosity. The morphological features of these amphibole fibres have been analysed in TEM images and used for classifying them as “asbestiform” or “non-asbestiform”. The results show that the asbestos hazard determination is not unequivocally identified when different procedures for asbestos fibre identification and classification are applied. This may have impact on normatives and regulations in defining environmental hazards due to asbestos occurrence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号