首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   10篇
  国内免费   1篇
测绘学   6篇
大气科学   3篇
地球物理   33篇
地质学   52篇
海洋学   6篇
天文学   10篇
自然地理   2篇
  2023年   1篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2018年   5篇
  2017年   6篇
  2016年   6篇
  2015年   8篇
  2014年   7篇
  2013年   4篇
  2012年   6篇
  2011年   9篇
  2010年   7篇
  2009年   9篇
  2008年   6篇
  2007年   5篇
  2006年   4篇
  2005年   8篇
  2004年   3篇
  2003年   4篇
  2002年   2篇
  2001年   2篇
  1998年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
排序方式: 共有112条查询结果,搜索用时 31 毫秒
101.
The compositional variation of clinopyroxene and the partitioning of major elements between clinopyroxene and melt are estimated as a function of the cooling rate. Clinopyroxenes were crystallized under variable cooling regimes (15, 9.4, 3, 2.1, and 0.5 °C/min from 1250 down to 1000 °C) and at isothermal conditions of 1000 °C from a basaltic composition at a pressure of 500 MPa under anhydrous and hydrous (H2O = 1.3 wt.%) conditions. The clinopyroxene chemistry shows that, as the cooling rate increases, crystals are progressively depleted in Ca, Mg, Fe2+ and Si and enriched in Na, Fe3+, Al (mainly AlIV), and Ti. Di and Hd versus CaTs and CaFeTs form a continuous binary solid solution characterized by higher amounts of tschermakitic components with increasing cooling rate. Two parameters (DH = Di + Hd and TE = CaTs + CaFeTs + En) are calculated to describe the effect of cooling rate on the clinopyroxene composition. The variation of DH/TE with increasing cooling rate evidences the kinetic process induced by rapid cooling in basic rocks under hydrous and anhydrous conditions.Dynamic crystallization conditions affect the partitioning of major elements between clinopyroxene and melt; with increasing cooling rate, the value of crystal–melt partition coefficient departs from that obtained at the isothermal condition. However, in spite of these variations, the values of cpx–meltKdFe–Mg remain almost constant. Therefore, the Fe2–Mg exchange between clinopyroxene and melt is not suitable to prove the (dis)equilibrium conditions in basaltic cooling magmas, giving rise to possible mismatches in the application of thermobarometers. The results of our study are consistent with that observed at the margin of dikes or in the exterior portions of lavas, where the cooling rate is maximized and disequilibrium compositions of clinopyroxene have been found.  相似文献   
102.
Water samples from cold and geothermal boreholes, hot springs, lakes and rivers were analyzed for δD, δ18O and 87Sr/86Sr compositions in order to investigate lake water–groundwater mixing processes, water–rock interactions, and to evaluate groundwater flow paths in the central Main Ethiopian Rift (MER) of the Ziway–Shala basin. Different ranges of isotopic values were recorded for different water types: hot springs show δ18O −3.36 to +3.69 and δD −15.85 to +24.23, deep Aluto-Langano geothermal wells show δ18O −4.65 to −1.24 and δD −12.39 to −9.31, groundwater wells show δ18O −3.99 to +5.14 and δD −19.69 to +32.27, whereas the lakes show δ18O and δD in the range +3.98 to +7.92 and +26.19 to +45.71, respectively. The intersection of the Local Meteoric Water Line (LMWL: δD = 7 δ18O + 11.2, R2 = 0.94, n = 42) and the Local Evaporation Line (LEL: δD = 5.63δ18O + 8, n = 14, R2 = 0.82) was used to estimate the average isotopic composition of recharge water into the basin (δD = −5.15 and δ18O = −2.34). These values are depleted if compared with the modern-day average precipitation, presumably indicating paleo-groundwater components recharged during previous humid climatic phases. The measured stable isotope values indicate that the geothermal wells, some of the hot springs and groundwater wells mainly consist of meteoric water. The Sr isotopic signatures in all waters are within the range of the Sr isotopic composition of the rift basalts and rhyolites. The variability of Sr isotopic data also pinpoints complex water–rock interaction and mixing processes in groundwater and surface water. The 87Sr/86Sr ratio ranges from 0.70445 to 0.70756 in the hot springs, from 0.70426 to 0.70537 in two deep geothermal wells, and from 0.70673 to 0.70721 in the rift lakes Ziway, Langano, Shala and Awasa. The radiogenic composition recorded by the lakes indicates that the input water was predominantly affected by progressive interaction with rhyolitic volcanics and lacustrine sediments.  相似文献   
103.
The evolution of the planetary boundary layer and the influence of local circulation phenomena over Naples (southern Italy, 40.838° N, 14.183° E, 118 m above sea level) have been studied by systematic lidar measurements of aerosol optical properties and vertical distributions carried out from May 2000 to August 2003, in the course of the EARLINET project. In particular, our data show the development of aerosol layers typically located in the range between 1,000 and 2,300 m, with variable thickness. The optical properties of the observed layers have been determined. In order to analyse the evolution of the planetary boundary layer, detailed observations of complete diurnal cycles have also been performed. The analysis of lidar measurements of vertical profiles of wind speed and wind direction and air mass back-trajectories allowed us to characterize the sea-breeze circulation influence on both the planetary boundary-layer evolution and the observed aerosol vertical distribution.  相似文献   
104.
Mantle xenoliths from the Olot volcanic district (NE Spain) comprise a bi-modal suite consisting of protogranular spinel lherzolites (cpx 12–14%) sometimes with pargasitic amphibole, and highly refractory spinel harzburgites (cpx ≤ 1%) with coarse-grained granular textures. The lherzolites range from slightly depleted to moderately LREE-enriched with flat HREE patterns between 1.5 and 2.7 × chondrite (Ch). In contrast, the harzburgites are extremely depleted in HREE (down to 0.2 × Ch) and strongly LREE-enriched (LaN/YbN = 12.3–17.2). LA-ICP-MS analyses of clinopyroxene and amphibole of the lherzolites highlight variable degrees of LREE depletion (HREE up to 13 × Ch, LaN/YbN down to 0.01), with the exception of a single sample in which both clinopyroxene and amphibole are LREE-enriched (LaN/YbN up to 19). In the harzburgites, clinopyroxenes display totally different REE distributions, characterized by extreme HREE depletion (down to 0.4 × Ch) and upward convex positively fractionated middle-light REE patterns (NdN/YbN up to 20.7 × Ch; LaN/YbN up to 12 × Ch). Sr–Nd–Hf isotopic data for both whole-rocks and cpx separates, coherently indicate depleted mantle (DM) compositions for the lherzolites (εSr = − 15 to − 26, εNd = + 9 to + 17, εHf = + 18 to + 68) and enriched mantle (EM) compositions for the harzburgites (εSr = − 10 to + 36, εNd = − 1 to − 6, εHf = + 3 to + 8). Modelling of the clinopyroxene REE data and isotopic systematics suggest that some lherzolites were affected by pre-Paleozoic (0.6–1 By) low-degree partial melting processes, while others probably reflect some extent of refertilization of the mantle protolith by metasomatizing melts similar to the Triassic rift-related tholeiites reported from several Pyrenean localities. The harzburgites represent extreme refractory residua, resulting from a complex depletion history due to multistage melt extraction as often observed in the cratonic mantle. The distinctive REE patterns and isotopic systematics of their clinopyroxenes suggest that the harzburgites were formed by the interaction of an ultra-depleted peridotite matrix with highly alkaline basic melts similar in composition to the Permo-Triassic alkaline lamprophyres which are widespread within the Iberian plate. Lherzolites possibly represent younger lithosphere (accreted asthenosphere?) up-lifted and juxtaposed to the older subcontinental lithospheric mantle (harzburgites) during the post-Variscan rifting of the Iberian margin. These two genetically different, but adjoining, mantle domains intimately mingled along the northern Iberian margin during the subsequent plate convergence processes, leading to the close association of harzburgites and lherzolites observed in the Olot mantle xenoliths and in some Pyrenean peridotite massifs.  相似文献   
105.
Previously undescribed debris-avalanche deposits occur in two locations downslope from the open end of the Valle del Bove. These outcrops comprise unstratified, ungraded deposits of metre-scale lava blocks in a matrix of weathered and fractured lava clasts. The avalanche deposits are unconformably overlain by matrix- to clast-supported conglomerates, representing debris-flow and interbedded fluvial deposits, that constitute most of the Milo Lahar sequence. We present evidence that the Milo Lahar sequence, which crops out just at the exit of the Valle del Bove, formed during the opening and enlargement of this depression. The presence of the avalanche deposits at the base of the Milo Lahar sequence indicates that catastrophic landslides were involved in the formation of the Valle del Bove. The composition of lavas in the debris avalanche deposits is similar to that of most of the Ellittico volcanic sequence exposed along the northern wall of the Valle del Bove. Radiocarbon dates of 8400 and 5300 years BP from the base and top, respectively, of the debris-flow sequence indicate that the Milo Lahars are correlative with the exposed part of the Chiancone deposit. The basal lahars of the Chiancone, which contain lava blocks whose compositions partially overlap that of blocks in the avalanche deposits, may have formed by water concentration in the distal end of the avalanche causing transformation to debris, or alternatively by reworking of the avalanche deposit.  相似文献   
106.
Abstract. ω13C and ω15N of organic matter sources and consumers were employed to analyse trophic differentiation between a benthic consumer, Gobius niger (L., 1758) (Pisces, Osteichthyes), and a pelagic consumer, Atherina boyeri (Risso, 1810) (Pisces, Osteichthyes) in a Mediterranean coastal lagoon (Lake of Sabaudia) in winter and summer 1999. Trophic differences between the two species throughout the two sampling periods were related to the environmental trophic condition (i. e. nutrient and phytopigment concentrations). Although these two fish have different habitats, they both exploited benthic organisms, above all in summer. When the nutrient and phytopigment concentrations were higher (summer), the most abundant benthic organisms were the main food sources for both species. In winter A. boyeri apparently shifted its feeding preferences to include zooplankton, confirming its opportunistic feeding strategy. Par-ticulate organic matter and algae seemed to play the main trophic role in the food web structure. Benthic invertebrates used both sources, while zooplankton seemed to rely exclusively on the particulate fraction. The overlapping and very depleted signatures of sedimentary and particulate organic matter highlights a strong link between sediments and water column, rarely observed in other aquatic ecosystems using stable isotopes. Such a finding further substantiates the importance of particulate organic matter as a food source in the study area.  相似文献   
107.
108.
Among the potential effects of climate change on subalpine forest ecosystems during the winter season, the shift in snowline towards higher altitudes and the increase in frequency of rain events on the snowpack are of particular interest. Here, we present the results of a 2‐year field experiment conducted in a forest stand (Larix decidua) in NW Italy at 2020 m a.s.l. From 2009 to 2011, we monitored soil physical characteristics (temperature and moisture), and soil and soil solution chemistry, in particular carbon (C) and nitrogen (N) forms and their change in time, as affected by simulated late snowpack accumulation and rain on snow events. Late snowpack accumulation determined a stronger effect on soil thermal and moisture regimes than rain on snow events. Also soil chemistry was significantly affected by late snowfall simulation. Although microbial biomass C and N were not reduced by soil freezing, soil contents of the more labile dissolved organic carbon and inorganic N increased when the soil was affected by mild/hard freezing. Variations in the soil solution were shifted with respect to those observed in soil, with an increase in N‐NO3? concentrations occurring during spring and summer. This study highlights the potential N loss in subalpine soils under changing environmental conditions driven by a changing climate. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号