首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   124篇
  免费   7篇
测绘学   2篇
大气科学   2篇
地球物理   26篇
地质学   69篇
海洋学   10篇
天文学   18篇
自然地理   4篇
  2023年   1篇
  2021年   3篇
  2020年   1篇
  2019年   5篇
  2018年   5篇
  2017年   1篇
  2016年   7篇
  2015年   4篇
  2014年   6篇
  2013年   9篇
  2012年   5篇
  2011年   6篇
  2010年   4篇
  2009年   10篇
  2008年   6篇
  2007年   5篇
  2006年   2篇
  2005年   5篇
  2004年   5篇
  2003年   2篇
  2002年   6篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1977年   1篇
  1975年   1篇
  1973年   3篇
  1972年   1篇
  1971年   1篇
  1964年   1篇
排序方式: 共有131条查询结果,搜索用时 15 毫秒
101.
The Ceprano calvarium, found in 1994 in Italy and attributed to Homo cepranensis, is one of the most celebrated hominin remains of Europe. It was considered at least 700 ka-old until a recent investigation incorporating magnetostratigraphy and K-Ar ages from the literature assigned to the calvarium an age of ∼450 (+50, −100) ka. Here we pin down the age of the Ceprano calvarium to 353 ± 4 ka (±1σ external) by means of new 40Ar/39Ar dating on K-feldspars retrieved from the sediments that hosted the skull. In absence of evidence of reworking, this refined age sinks the conviction that H. cepranensis belonged to human evolution at the Brunhes–Matuyama boundary (c.a. 781 ka). Our refined age indicates that H. cepranensis lived in central Italy probably during the cold period of marine isotope stage (MIS) 10, and that despite his archaic morphology and lack of Neanderthal traits, he was contemporaneous with more advanced species such as H. heidelbergensis.  相似文献   
102.
In this study, a baroclinic coastal trapped wave, with period ~?4.5 days and cross-shore scale ~?3 km, is identified in the outputs of a very-high-resolution ocean circulation model of the Campania coastal system (central Tyrrhenian Sea; including the Gulfs of Salerno, Naples, and Gaeta). The outputs are from a simulation spanning June 2003, a month in which the surface winds were always weak, except for a strong northeasterly wind event that lasted 1 day (20 June). This event is found to generate a strong upwelling along the Campania coasts, whose relaxation—virtually free, because of the weakness of the winds—produces coastal current fluctuations that propagate to the north, spanning the three gulfs. The dynamics (analyzed with a focus on the Gulf of Naples) is found to share important features with baroclinic Kelvin waves in a two-layer model, such as the sharp cross-shore decrease of the perturbation amplitude and the vertical reversal of the long-shore current velocities. The simulated phase speed, cross-shore extension, and wavelength of the perturbation are also close to those obtained using a two-layer approximation of the dynamics. Moreover, the propagation described by the models is shown to be compatible with current measurements that were made in June 2003 at the southern entrance of the Gulf of Naples. Experimental implications related to the specific oceanographic problem are finally discussed, and an experimental strategy—inspired by our modeling approach—aimed at identifying the phenomenon is proposed.  相似文献   
103.
The mechanical properties of calcarenites are known to be significantly affected by water saturation: both stiffness and strength decrease for wetting in the short term and for chemical dissolution in the long term. Both processes mainly affect bonds among grains: immediately after inundation depositional bonds fall in suspension, whereas diagenetic bonds dissolve more slowly. In this paper, the authors started from the micro‐structural analysis of the weathering processes to conceive a strain hardening hydro‐chemo‐mechanical coupled elastoplastic constitutive model. The concept of extended hardening rules is here enriched: weathering functions have been determined by employing a micro to macro simplified upscaling procedure. Chemical damage is incorporated into the formulation by means of a scalar damage function. Its evolution is also described by using a multiscale approach. A new term is added to the strain rate tensor in order to incorporate the dissolution induced chemical deformations developing once the soft rock is turned into a granular material. A calibration procedure for the constitutive parameters is suggested, and the model is validated by using both coupled and uncoupled chemo‐mechanical experimental test results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
104.
105.
This paper aims at extending the well‐known critical state concept, associated with quasi‐static conditions, by accounting for the role played by the strain rate when focusing on the steady, simple shear flow of a dry assembly of identical, inelastic, soft spheres. An additional state variable for the system, the granular temperature, is accounted for. The granular temperature is related to the particle velocity fluctuations and measures the agitation of the system. This state variable, as is in the context of kinetic theories of granular gases, is assumed to govern the response of the material at large strain rates and low concentrations. The stresses of the system are associated with enduring, frictional contacts among particles involved in force chains and nearly instantaneous collisions. When the first mechanism prevails, the material behaves like a solid, and constitutive models of soil mechanics hold, whereas when inelastic collisions dominate, the material flows like a granular gas, and kinetic theories apply. Considering a pressure‐imposed flow, at large values of the normal stress and small values of the shear rate, the theory predicts a nonmonotonic shear rate dependence of the stress ratio at the steady state, which is likely to govern the evolution of landslides. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
106.
The numerical simulation of rapid landslides is quite complex mainly because constitutive models capable of simulating the mechanical behaviour of granular materials in the pre‐collapse and post‐collapse regimes are still missing. The goal of this paper is to introduce a constitutive model capable of capturing the response of dry granular flows from quasi‐static to dynamic conditions, in particular when the material experiences a sort of solid‐to‐fluid phase transition. An ideal assembly of identical spheres under simple shear conditions is considered. In the constitutive model, void ratio and granular temperature have been chosen as state variables, and both shear and normal stresses are computed as the sum of two contributions: the quasi‐static one and the collisional one. The former is determined by using a perfect elasto‐plastic model including the critical state concept, while the latter is derived from the kinetic theory of granular gases. The evolution of the granular temperature, fundamentally governing the material phase transition, is obtained by imposing the kinetic fluctuating energy balance. The constitutive relationship has been integrated, under both constant pressure and constant volume conditions, and the influence of shear strain rate, initial void ratio and normal pressure on the mechanical response has been investigated. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
107.
Joint analysis of Rayleigh- and Love-wave dispersion is performed with the aim of evaluating how their joint use can improve retrieved vertical VS profiles. In fact, non-uniqueness of the solution and complex energy distribution among different modes represent problems which, if not properly considered, can eventually lead to ambiguous or erroneous subsurface models.Some tests performed on synthetic datasets show that for the deepest layers the improvements obtained by the joint inversion cannot be considered as fully decisive in terms of ultimate solution of non-uniqueness. Nevertheless joint analysis of dispersive properties of Rayleigh and Love waves reveals as a highly valuable tool able to clarify possible interpretation issues of the single components. Under some stratigraphical circumstances, velocity spectra of Rayleigh waves can in fact be extremely complex in terms of energy distribution among different modes and erroneous interpretations of dispersion curves can thus occur. Beneficial aspects of the joint analysis is shown in the light of possible inconsistencies of the Pareto front, since major interpretative errors can be revealed in the outcomes of the proposed inversion procedure. Two field datasets are analysed also suggesting some improvements in the field acquisition procedures aimed at the acquisition of both Rayleigh and Love waves.  相似文献   
108.
109.
A short intra‐Messinian continental period has been recognised in some North Italian gypsum areas, mostly under the form of palaeokarst deposits. This emersion appears to have occurred only locally, and is explained as caused by the intra‐Messinian tectonic phase and a major sea level lowering. Evidences of this palaeokarst are mostly small, although at some places the palaeontological content of its fillings is of great importance. The discovery near Zola Predosa (Bologna) of a new intra‐Messinian extensive karst system and of its infilling sheds new light on the importance of this karst episode.  相似文献   
110.
The volumetric compaction due to wetting processes is a phenomenon observed quite often in unsaturated soils. Under certain circumstances, saturation events can result into a sudden and unexpected collapse of the system. These phenomena are usually referred to as wetting‐induced collapses, without providing any detailed theoretical justification for this terminology. In order to predict in a general fashion the occurrence of coupled instabilities induced by saturation processes, a generalization of the theoretical approaches usually employed for saturated geomaterials is here provided. More specifically, this paper addresses the problem of hydro‐mechanical instability in unsaturated soils from an energy standpoint. For this purpose, an extension of the definition of the second‐order work is here suggested for the case of unsaturated porous media. On the basis of some examples of numerical simulations of laboratory tests, coupled hydro‐mechanical instabilities are then interpreted in the light of this second‐order energy measure. Finally, the implications of the theoretical results here presented are commented from a constitutive modelling perspective. Two possible alternative approaches to formulate incremental coupled constitutive relations are indeed discussed, showing how the onset of hydro‐mechanical instabilities can be predicted using an extended form of Hill's stability criterion. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号