首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   2篇
  国内免费   1篇
测绘学   1篇
大气科学   7篇
地球物理   20篇
地质学   48篇
海洋学   7篇
天文学   22篇
综合类   2篇
自然地理   5篇
  2023年   1篇
  2021年   3篇
  2020年   3篇
  2019年   2篇
  2018年   7篇
  2017年   5篇
  2016年   7篇
  2015年   3篇
  2014年   6篇
  2013年   7篇
  2012年   4篇
  2011年   10篇
  2010年   7篇
  2009年   7篇
  2008年   7篇
  2007年   7篇
  2006年   3篇
  2005年   3篇
  2004年   4篇
  2003年   1篇
  2002年   3篇
  2001年   3篇
  2000年   2篇
  1998年   2篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1980年   1篇
  1953年   1篇
排序方式: 共有112条查询结果,搜索用时 15 毫秒
91.
The Calomini hermitage is located on a steep slope, below an 80- to 130-m-high hanging rock wall. The hermitage, a significant example of religious architecture, has been a pilgrimage place since the Middle Ages. The monastery, completed by the tenth century, is built into the rock mass for more than half of its length. The stability and safety of the complex are threatened by stability problems in the rock slope. Structural and geotechnical investigations were carried out, showing the potential for rock blocks slides, particularly under dynamic conditions, with the fall of middle size blocks. Recently, some remedial works have been carried out, and wire meshes have been hung on the rock wall. Nevertheless, a significant portion of the Calomini hermitage area may be still dangerous and exposed to severe landslide hazard. Therefore, further research and countermeasures are necessary to protect a very important item of Italian cultural and architectural heritage.  相似文献   
92.
In SW Sardinia, the continental Tertiary successions referred up to now to the Cixerri Fm. (Middle Eocene–Lower Oligocene?) have been investigated. Sedimentological analysis suggests these deposits lied down in fluvial environments and comprised between distal braided streams passing eastward to meandering streams/coastal environments (?) under sub-arid climates. The scrutinization of the Cixerri Fm. westernmost successions allowed one to split locally the upper from the lower part based on sedimentological and mineralogical features and indirect dating. Unfortunately, this separation cannot be set everywhere. The few upper outcrops plainly evidenced and well-constrained have been newly named Flumentepido Fm. and assigned to Late Oligocene–Early Miocene: they figure out alluvial fans and proximal braided rivers. This way, the SW Sardinia Tertiary continental sedimentation extends its persistence, contemporaneously changing its tectostratigraphic meaning: from a molassoid context related to the Pyrenean wedge dismantling (Eocene–Oligocene) to a rift-margin succession connected with the opening of the Algero-Provençal back-arc basin due to the Apennine subduction in Oligocene–Miocene times.  相似文献   
93.
Magma-induced strain localization in centrifuge models of transfer zones   总被引:1,自引:0,他引:1  
Scaled centrifuge experiments have been used to investigate the dynamic relations between deformation and magma distribution in rift-related transfer zones. The physical models were built using suitable analogue materials, such as sand to represent the brittle upper crust, various kinds of silicone mixtures to simulate the lower crust and upper mantle and glycerol to reproduce magma. Models simulated the development of transfer zones across pre-existing glycerol reservoirs placed at the base of the analogue continental crust. In plan view, different geometries, dimensions and positions of subcrustal reservoirs were reproduced in three different sets of experiments; to compare results, models were also performed without magma-simulating glycerol.Set 1 experiments, incorporating a narrow rectangular glycerol reservoir, show that the low-viscosity material is able to localise deformation into the overlying crust, giving rise to discrete transfer zones. This concentrated surface deformation corresponds at depth to major magma accumulation. Set 2 experiments, with an initial wide squared glycerol reservoir, show instead that deformation is distributed across the whole model surface, corresponding at depth to relatively minor magma accumulation. Set 3 experiments explored various positions of a small squared reservoir that invariably localised faulting in the overlying analogue brittle crust at the onset of model deformation.The overall model behaviour suggests that magma distribution at depth can effectively control the strain distribution in the overlying crust and the deformative pattern of transfer zones. Strain distribution, in turn, may control magma emplacement as localized deformation would favour major accumulation of magma at transfer zones. Coupled to a strong thermal weakening of the country rocks, this process may ultimately lead to a positive feedback interaction between magma and deformation.  相似文献   
94.
Mapping Mercury's internal magnetic field with a magnetometer in closed orbit around the planet will provide valuable information about its internal structure. By measuring magnetic field multipoles of order higher than the dipole we could, in principle, determine some properties, such as size and location, of the internal source. Here we try to quantify these expectations. Using conceptual models, we simulate the actual measurement during the BepiColombo mission, and then we analyze the simulated data in order to estimate the measurement errors due to the limited spatial sampling. We also investigate our ability to locate the field generating current system within the planet. Finally, we address the main limitation of our model, due to the presence of time-varying external magnetospheric currents.  相似文献   
95.
Humus forms, especially the occurrence and the thickness of the horizon of humified residues(OH), provide valuable information on site conditions.In mountain forest soils, humus forms show a high spatial variability and data on their spatial patterns is often scarce. Our aim was to test the applicability of various vegetation features as proxy for OH thickness.Subalpine coniferous forests dominated by Picea abies(L.) H. Karst. and Larix decidua Mill. were studied in the Province of Trento, Italian Alps,between ca. 900 and 2200 m a.s.l. Braun-Blanquet vegetation relevés and OH thickness were recorded at152 plots. The vegetation parameters, tested for their suitability as indicators of OH thickness,encompassed mean Landolt indicator values of the herb layer(both unweighted and cover-weighted means) as well as parameters of vegetation structure(cover values of plant species groups) calculated from the relevés. To our knowledge, the predictive power of Landolt indicator values(LIVs) for humus forms had not been tested before. Correlations between OH thickness and mean LIVs were strongest for the soil reaction value, but indicator values for humus,nutrients, temperature and light were also significantly correlated with OH thickness. Generally,weighting with species cover reduced the indicator quality of mean LIVs for OH thickness. The strongest relationships between OH thickness and vegetation structure existed in the following indicators: the cover of forbs(excluding graminoids and ferns) and the cover of Ericaceae in the herb layer. Regression models predicting OH thickness based on vegetation structure had almost as much predictive power as models based on LIVs. We conclude that LIVs analysis can produce fairly reliable information regarding the thickness of the OH horizon and, thus,the humus form. If no relevé data are readily available,a field estimation of the cover values of certain easily distinguishable herb layer species groups is much faster than a vegetation survey with consecutive indicator value analysis, and might be a feasible way of quickly indicating the humus form.  相似文献   
96.
Abstract– Xenoliths are inclusions of a given meteorite group embedded in host meteorites of a different group. Xenoliths with dimensions between a few μm and about 1 mm (microxenoliths) are “meteorite‐trapped” analogues of micrometeorites collected on the Earth. However, they have the unique features of sampling the zodiacal cloud (1) at more ancient times than those sampled by micrometeorites and (2) at larger distances from the Sun (corresponding to the asteroid Main Belt) than that sampled by micrometeorites (1 AU). Herein we describe a systematic search for new xenoliths and microxenoliths in H chondrites, aimed at determining their abundance in these ordinary chondrites, analyzing their mineralogy, and searching for possible correlations with host meteorite properties. Sixty‐six sections from 40 meteorites have been analyzed. Twenty‐four new xenoliths have been discovered. About 87% of them are microxenoliths (i.e., <1 mm), only three are >1 mm in their largest dimension. All the newly discovered xenoliths and microxenoliths are composed of carbonaceous chondritic material. Hence, the zodiacal cloud was dominated by carbonaceous material even in past epochs. All the new xenoliths and microxenoliths have been found in regolith breccias. Hydrous‐phase‐rich xenoliths and microxenoliths in H4 and H5 chondrites attest that their embedding happened after the end of the thermal metamorphism. All these data suggest that xenoliths and microxenoliths were embedded when their host meteorites were part of the parent body regolith. This, combined with the H chondrite impact age distribution, attests that the embedding may have happened as early as 3.5 Gyr ago.  相似文献   
97.
98.
Abstract– Micrometeoroids with 100 and 200 μm size dominate the zodiacal cloud dust. Such samples can be studied as micrometeorites, after their passage through the Earth atmosphere, or as microxenoliths, i.e., submillimetric meteorite inclusions. Microxenoliths are samples of the zodiacal cloud dust present in the asteroid Main Belt hundreds of millions years ago. Carbonaceous microxenoliths represent the majority of observed microxenoliths. They have been studied in detail in howardites and H chondrites. We investigate the role of carbonaceous asteroids and Jupiter‐family comets as carbonaceous microxenolith parent bodies. The probability of low velocity collisions of asteroidal and cometary micrometeoroids with selected asteroids is computed, starting from the micrometeoroid steady‐state orbital distributions obtained by dynamical simulations. We selected possible parent bodies of howardites (Vesta) and H chondrites (Hebe, Flora, Eunomia, Koronis, Maria) as target asteroids. Estimates of the asteroidal and cometary micrometeoroid mass between 2 and 4 AU from the Sun are used to compute the micrometeoroid mass influx on each target. The results show that all the target asteroids (except Koronis) receive the same amount (within the uncertainties) of asteroidal and cometary micrometeoroids. Therefore, both these populations should be observed among howardite and H chondrite carbonaceous microxenoliths. However, this is not the case: carbonaceous microxenoliths show differences similar to those existing among different groups of carbonaceous chondrites (e.g., CI, CM, CR) but two sharply distinct populations are not observed. Our results and the observations can be reconciled assuming the existence of a continuum of mineralogical and chemical properties between carbonaceous asteroids and comets.  相似文献   
99.
Giacomo Corti   《Earth》2009,96(1-2):1-53
The Main Ethiopian Rift is a key sector of the East African Rift System that connects the Afar depression, at Red Sea–Gulf of Aden junction, with the Turkana depression and Kenya Rift to the South. It is a magmatic rift that records all the different stages of rift evolution from rift initiation to break-up and incipient oceanic spreading: it is thus an ideal place to analyse the evolution of continental extension, the rupture of lithospheric plates and the dynamics by which distributed continental deformation is progressively focused at oceanic spreading centres.The first tectono-magmatic event related to the Tertiary rifting was the eruption of voluminous flood basalts that apparently occurred in a rather short time interval at around 30 Ma; strong plateau uplift, which resulted in the development of the Ethiopian and Somalian plateaus now surrounding the rift valley, has been suggested to have initiated contemporaneously or shortly after the extensive flood-basalt volcanism, although its exact timing remains controversial. Voluminous volcanism and uplift started prior to the main rifting phases, suggesting a mantle plume influence on the Tertiary deformation in East Africa. Different plume hypothesis have been suggested, with recent models indicating the existence of deep superplume originating at the core-mantle boundary beneath southern Africa, rising in a north–northeastward direction toward eastern Africa, and feeding multiple plume stems in the upper mantle. However, the existence of this whole-mantle feature and its possible connection with Tertiary rifting are highly debated.The main rifting phases started diachronously along the MER in the Mio-Pliocene; rift propagation was not a smooth process but rather a process with punctuated episodes of extension and relative quiescence. Rift location was most probably controlled by the reactivation of a lithospheric-scale pre-Cambrian weakness; the orientation of this weakness (roughly NE–SW) and the Late Pliocene (post 3.2 Ma)-recent extensional stress field generated by relative motion between Nubia and Somalia plates (roughly ESE–WNW) suggest that oblique rifting conditions have controlled rift evolution. However, it is still unclear if these kinematical boundary conditions have remained steady since the initial stages of rifting or the kinematics has changed during the Late Pliocene or at the Pliocene–Pleistocene boundary.Analysis of geological–geophysical data suggests that continental rifting in the MER evolved in two different phases. An early (Mio-Pliocene) continental rifting stage was characterised by displacement along large boundary faults, subsidence of rift depression with local development of deep (up to 5 km) asymmetric basins and diffuse magmatic activity. In this initial phase, magmatism encompassed the whole rift, with volcanic activity affecting the rift depression, the major boundary faults and limited portions of the rift shoulders (off-axis volcanism). Progressive extension led to the second (Pleistocene) rifting stage, characterised by a riftward narrowing of the volcano-tectonic activity. In this phase, the main boundary faults were deactivated and extensional deformation was accommodated by dense swarms of faults (Wonji segments) in the thinned rift depression. The progressive thinning of the continental lithosphere under constant, prolonged oblique rifting conditions controlled this migration of deformation, possibly in tandem with the weakening related to magmatic processes and/or a change in rift kinematics. Owing to the oblique rifting conditions, the fault swarms obliquely cut the rift floor and were characterised by a typical right-stepping arrangement. Ascending magmas were focused by the Wonji segments, with eruption of magmas at surface preferentially occurring along the oblique faults. As soon as the volcano-tectonic activity was localised within Wonji segments, a strong feedback between deformation and magmatism developed: the thinned lithosphere was strongly modified by the extensive magma intrusion and extension was facilitated and accommodated by a combination of magmatic intrusion, dyking and faulting. In these conditions, focused melt intrusion allows the rupture of the thick continental lithosphere and the magmatic segments act as incipient slow-spreading mid-ocean spreading centres sandwiched by continental lithosphere.Overall the above-described evolution of the MER (at least in its northernmost sector) documents a transition from fault-dominated rift morphology in the early stages of extension toward magma-assisted rifting during the final stages of continental break-up. A strong increase in coupling between deformation and magmatism with extension is documented, with magma intrusion and dyking playing a larger role than faulting in strain accommodation as rifting progresses to seafloor spreading.  相似文献   
100.
On June 19, 1996, an extremely heavy rainstorm hit a restricted area in the Apuan Alps (northwestern Tuscany, Italy). Its max intensity concentrated over an area of about 150 km2 astride the Apuan chain, where 474 mm was recorded in about 12 h (21% of the mean annual precipitation, with an intensity up to 158 mm/h). The storm caused floods and hundreds of landslides and debris flows, which produced huge damage (hundreds of millions of Euros), partially destroyed villages and killed 14 people. This paper reports the results obtained from a detailed field survey and aerial view interpretation. In the most severely involved area, 647 main landslides were investigated, mapped and related to the geologic, geomorphic and vegetational factors of the source areas. This was in order to define the influence of these factors and contribute to an evaluation of the landslide hazard in the study area. An assessment was also made of the total area and volume of material mobilised by landsliding. The study area, about 46 km2 wide, includes three typically mountainous basins, characterised by narrow, deep cut valleys and steep slopes, where many rock types outcrop. Most of the landslides were shallow and linear, referable to complex, earth and debris translational slide, which quickly developed into flow (soil slip–debris flow). Usually, they involved colluvium and started in hollows underlain by metamorphic rock (metasandstone and phyllite), often dipping downslope. Therefore, bedrock lithology and impermeability appeared to be important factors in the localisation of the landslide phenomena. The investigation of the geomorphic and land use features in the source areas also frequently highlighted a rectilinear profile of the slope, a high slope gradient (31–45°) and dense chestnut wood cover. In the area, about 985,000 m2 (2.1% of 46 km2) was affected by landsliding and about 700,000 m2 of this area was covered by chestnut forest. The landslides removed about 7000 trees. The volume of mobilised material was about 1,360,000 m3; about 220,000 m3 remained on the slopes, while the rest poured into the streams. In addition, about 945,000 m3 was mobilised by the torrential erosion in the riverbeds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号