首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   129篇
  免费   3篇
测绘学   6篇
大气科学   11篇
地球物理   25篇
地质学   48篇
海洋学   14篇
天文学   11篇
自然地理   17篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   8篇
  2017年   2篇
  2016年   1篇
  2015年   4篇
  2014年   2篇
  2013年   8篇
  2012年   4篇
  2011年   13篇
  2010年   5篇
  2009年   4篇
  2008年   6篇
  2007年   8篇
  2006年   9篇
  2005年   11篇
  2004年   4篇
  2003年   4篇
  2002年   4篇
  2001年   5篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
  1973年   1篇
  1964年   1篇
  1960年   1篇
排序方式: 共有132条查询结果,搜索用时 696 毫秒
41.
River system measurement and mapping using UAVs is both lean and agile, with the added advantage of increased safety for the surveying crew. A common parameter of fluvial geomorphological studies is the flow velocity, which is a major driver of sediment behavior. Advances in fluid mechanics now include metrics describing the presence and interaction of coherent structures within a flow field and along its boundaries. These metrics have proven to be useful in studying the complex turbulent flows but require time‐resolved flow field data, which is normally unavailable in geomorphological studies. Contactless UAV‐based velocity measurement provides a new source of velocity field data for measurements of extreme hydrological events at a safe distance, and could allow for measurements of inaccessible areas. Recent works have successfully applied large‐scale particle image velocimetry (LSPIV) using UAVs in rivers, focusing predominantly on surficial flow estimation by tracking intensity differences between georeferenced images. The objective of this work is to introduce a methodology for UAV based real‐time particle tracking in rivers (RAPTOR) in a case study along a short test reach of the Brigach River in the German Black Forest. This methodology allows for large‐scale particle tracking velocimetry (LSPTV) using a combination of floating, infrared light‐emitting particles and a programmable embedded color vision sensor in order to simultaneously detect and track the positions of objects. The main advantage of this approach is its ability to rapidly collect and process the position data, which can be done in real time. The disadvantages are that the method requires the use of specialized light‐emitting particles, which in some cases cannot be retrieved from the investigation area, and that the method returns velocity data in unscaled units of px/s. This work introduces the RAPTOR system with its hardware, data processing workflow, and provides an example of unscaled velocity field estimation using the proposed method. First experiences with the method show that the tracking rate of 50 Hz allows for position estimation with sub‐pixel accuracy, even considering UAV self‐motion. A comparison of the unscaled tracks after Savitzky–Golay filtering shows that although the time‐averaged velocities remain virtually the same, the filter reduces the standard deviation by more than 40% and the maxima by 20%. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
42.
River floodplains constitute an important element in the terrestrial sediment and organic carbon cycle and store variable amounts of carbon and sediment depending on a complex interplay of internal and external driving forces. Quantifying the storage in floodplains is crucial to understand their role in the sediment and carbon cascades. Unfortunately, quantitative data on floodplain storage are limited, especially at larger spatial scales. Rivers in the Scottish Highlands can provide a special case to study alluvial sediment and carbon dynamics because of the dominance of peatlands throughout the landscape, but the alluvial history of the region remains poorly understood. In this study, the floodplain sediment and soil organic carbon storage is quantified for the mountainous headwaters of the River Dee in eastern Scotland (663 km2), based on a coring dataset of 78 floodplain cross-sections. Whereas the mineral sediment storage is dominated by wandering gravel-bed river sections, most of the soil organic carbon storage can be found in anastomosing and meandering sections. The total storage for the Upper Dee catchment can be estimated at 5.2 Mt or 2306.5 Mg ha-1 of mineral sediment and 0.7 Mt or 323.3 Mg C ha-1 of soil organic carbon, which is in line with other studies on temperate river systems. Statistical analysis indicates that the storage is mostly related to the floodplain slope and the geomorphic floodplain type, which incorporates the characteristic stream power, channel morphology and the deposit type. Mapping of the geomorphic floodplain type using a simple classification scheme shows to be a powerful tool in studying the total storage and local variability of mineral sediment and soil organic carbon in floodplains. © 2019 John Wiley & Sons, Ltd.  相似文献   
43.
Low frequency Radio Astronomy instruments like LOFAR and SKA-LOW use arrays of dipole antennas for the collection of radio signals from the sky. Due to the large number of antennas involved, the total data rate produced by all the antennas is enormous. Storage of the antenna data is both economically and technologically infeasible using the current state of the art storage technology. Therefore, real-time processing of the antenna voltage data using beam forming and correlation is applied to achieve a data reduction throughout the signal chain. However, most science could equally well be performed using an archive of raw antenna voltage data coming straight from the A/D converters instead of capturing and processing the antenna data in real time over and over again. Trends on storage and computing technology make such an approach feasible on a time scale of approximately 10 years. The benefits of such a system approach are more science output and a higher flexibility with respect to the science operations. In this paper we present a radically new system concept for a radio telescope based on storage of raw antenna data. LOFAR is used as an example for such a future instrument.  相似文献   
44.
Holocene cooling events have been reconstructed for the southern Adriatic Sea (central Mediterranean) by means of analyses of organic walled dinoflagellate cysts, planktonic foraminifera, oxygen isotopes, calcareous nanoplankton, alkenones and pollen from a sediment core. Two cooling events have been detected, during which sea‐surface temperatures (SSTs) were ca. 2°C lower. Unravelling the SST signal into dominant seasonal components suggests maximum winter cooling of 2°C at around 6.0 ka, whereas the cooling at ca. 3.0 ka might be the result of a spring temperature cooling of 2–3°C. The events, lasting several hundred years, are apparently synchronous with those in the Aegean Sea, where they have been related to known cooling events from the Greenland ice‐core record. A distinct interruption in Adriatic Sea sapropel S1 is not clearly accompanied by a local drop in winter temperatures, but seems to be forced by ventilation, which probably occurred earlier in the Aegean Sea and was subsequently transmitted to the Adriatic Sea. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
45.
It is well known that oxidation of sulphide-containing coal mine waste has considerable environmental impacts due to generation of acid mine drainage (AMD) containing high dissolved metal concentrations. This study is the first to evaluate seasonal trends in the release of AMD from high arctic coal mine waste rock. Runoff from an abandoned coal mine waste pile in Svalbard (78°N) was studied during the entire 3–4 month period with running water in 2005. Temporal variation in concentrations and fluxes of dissolved elements were quantified based on daily water sampling and used to evaluate weathering processes and estimate element budgets on a daily, seasonal and annual basis. Apart from alkali- and alkaline earth metals; Fe, Al, Mn, Zn and Ni were found to be the most abundant metals in the runoff. Element concentrations were highly correlated and suggest that the processes of sulphide oxidation, ion exchange and silicate weathering occurring within the waste pile were linked throughout the measuring period. Observed pH values varied from 2.8 to 5.2 and SO4 concentrations from 21 to 1463 mg L−1. Manganese and Al concentrations were observed above phytotoxic levels (up to 4 and 23 mg L−1, respectively) and were considered the most critical elements in terms of environmental impact. Throughout the summer a total dissolved quantity of 58 kg Mn, 238 kg Al and 13,700 kg SO4 was released from the pile containing approximately 200,000 m3 of pyritic waste material (<1% FeS2). The highest concentrations of metals, lowest pH values and a very high daily release of H2SO4 (up to twice as high as the following month) were observed during the first week of thaw. This is considered a result of an accumulation of weathering products, generated within the waste pile during winter and released as a pollution-flush during early spring. Similar accumulation/flush sequences were observed later in the summer where rain events following relatively long dry periods caused high daily metal fluxes and on some occasions also elevated dissolved metal concentrations. Despite highly variable weather/climate conditions during the rest of the summer the investigated waste rock pile acted like a relative constant pollution-source during this period. Future investigations regarding the environmental impact of mine waste in the region should include measurements of bioavailable metals in order to provide further details on the seasonal trends in environmental impact.  相似文献   
46.
Abiogenic methane may be produced in submarine hydrothermal systems by degassing of basalts or serpentinization of ultramafic outcrops. The latter process presumably releases little primordial helium and is therefore implicated by high CH4/3He ratios in vent fluids from the ultramafic-hosted Rainbow field and in methane plumes near ultramafic outcrops. In two segments of the Mid-Atlantic Ridge, at 5.4°N and 51°N, we have observed depth-separated CH4 and 3He plumes. In both cases, the helium plume was deeper, near the valley floor. It may be that the plumes issue from separate vents, where the helium is discharged near the volcanic axis and the methane is generated by serpentinization on the valley wall. However, at the present time the locations of the vents that produce these plumes are not known. Using a one-pass model, we investigated whether separate venting could arise from heat conduction from a primary, helium-carrying, hydrothermal circulation to a second, shallower fracture loop intersecting ultramafic rock. The model results indicate that the flow rate through the secondary loop would have to be relatively low in order for it to stay warm enough for serpentinization to proceed. In this case, some of the exothermic heat production is lost by conduction, and the temperature increase in the circulating fluid is only a fraction of that expected from a water/rock ratio of 1:1.  相似文献   
47.
Lake Markermeer is a large (680?km2), shallow body of water in the middle of the Netherlands, with a mean water depth of 3.6?m. One of the major problems in the lake is its decreasing ecological value which is, among other reasons, caused by a gradual increase of suspended sediment concentration and associated increase of light attenuation in the water column. A thorough understanding of fine sediment dynamics in the lake is a prerequisite for solving this problem. This paper addresses the 3D nature of near-bed sediment dynamics in Lake Markermeer, based on data sampled from a 1-month field experiment in autumn 2007. The campaign involved the collection of 71 bed samples across the lake. At each location, dual-frequency echo soundings were carried out to assess the thickness of the silt layer, and sediment concentration throughout the water column was measured with an Optical Backscatter Sensor (OBS). Moreover, 2-week time series of wave height, water level, current velocities, and near-bed sediment concentration were collected at a single location. The time series of sediment concentration were measured with a regular OBS and an Argus Surface Meter IV (ASM). During the measurement period, flow velocities ranged between 2 and 15?cm/s, wave heights up to 1.2?m were observed and turbidity levels varied between 40?mg/l to more than 300?mg/l. The ASM data generally showed uniform concentration profiles. However, profiles with steep concentration gradients near the bed were found for wave heights above 0.5?m. The field experiments further revealed pronounced 3D structures near the bed during discrete storms. The results are generalized for a wider range of conditions and across the full water depth through application of a 1DV point model, using a two-fraction representation of the grain size distribution. The fine and coarse fractions are found to resuspend rapidly for wind speeds above 5?m/s and 10??2?m/s, respectively, forming a uniform concentration profile if these wind conditions persists. High-concentration (???g/l) layers near the bed, containing the coarse sediment fraction, only occur at the onset and towards the end of a storm, when wind speed changes rapidly. It is under these conditions that horizontal gradients in layer density or thickness can transport considerable fine sediment. This transport provides an additional mechanism for the infill of, for instance, silt traps and navigation channels.  相似文献   
48.
49.
The terrigenous fraction of sediments recovered from Walvis Ridge, SE Atlantic Ocean, reveals a history of southwestern African climate of the last 300 kyr. End-member modelling of a data set of grain-size distributions (n=428) results in three end members. The two coarsest end members are interpreted as eolian dust, the third end member as hemipelagic mud. The ratio of the two eolian end members reflects the eolian grain size and is attributed to the intensity of the SE trade winds. Trade winds were intensified during glacials compared to interglacials. Changes in the ratio of the two eolian end members over the hemipelagic one are interpreted as variations in southwestern African aridity. Late Quaternary southwestern African climate was relatively arid during the interglacial stages and relatively humid during the glacial stages, owing to meridional shifts in the atmospheric circulation system. During glacials the polar front shifted equatorward, resulting in a northward displacement of the zone of westerlies, causing increased rainfall in southwestern Africa. The equatorward shift of the polar front is coupled with an increase of the meridional pressure gradient, leading to enhanced atmospheric circulation and increased trade-wind intensity.  相似文献   
50.
We have designed and implemented a novel way to process wide-field astronomical data within a distributed environment of hardware resources and humanpower. The system is characterized by integration of archiving, calibration, and post-calibration analysis of data from raw, through intermediate, to final data products. It is a true integration thanks to complete linking of data lineage from the final catalogs back to the raw data. This paper describes the pipeline processing of optical wide-field astronomical data from the WFI (http://www.eso.org/lasilla/instruments/wfi/) and OmegaCAM (http://www.astro-wise.org/~omegacam/) instruments using the Astro-WISE information system (the Astro-WISE Environment or simply AWE). This information system is an environment of hardware resources and humanpower distributed over Europe. AWE is characterized by integration of archiving, data calibration, post-calibration analysis, and archiving of raw, intermediate, and final data products. The true integration enables a complete data processing cycle from the raw data up to the publication of science-ready catalogs. The advantages of this system for very large datasets are in the areas of: survey operations management, quality control, calibration analyses, and massive processing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号