首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2284篇
  免费   44篇
  国内免费   27篇
测绘学   48篇
大气科学   107篇
地球物理   578篇
地质学   786篇
海洋学   238篇
天文学   373篇
综合类   10篇
自然地理   215篇
  2021年   21篇
  2020年   31篇
  2019年   28篇
  2018年   42篇
  2017年   32篇
  2016年   63篇
  2015年   44篇
  2014年   57篇
  2013年   123篇
  2012年   65篇
  2011年   114篇
  2010年   80篇
  2009年   97篇
  2008年   82篇
  2007年   93篇
  2006年   86篇
  2005年   90篇
  2004年   76篇
  2003年   54篇
  2002年   74篇
  2001年   40篇
  2000年   38篇
  1999年   43篇
  1998年   28篇
  1997年   31篇
  1996年   32篇
  1995年   41篇
  1994年   34篇
  1993年   28篇
  1992年   25篇
  1991年   32篇
  1990年   24篇
  1989年   24篇
  1988年   34篇
  1987年   27篇
  1986年   24篇
  1985年   35篇
  1984年   38篇
  1983年   41篇
  1982年   32篇
  1981年   30篇
  1980年   27篇
  1979年   33篇
  1978年   24篇
  1977年   33篇
  1976年   32篇
  1975年   25篇
  1973年   19篇
  1972年   23篇
  1971年   18篇
排序方式: 共有2355条查询结果,搜索用时 15 毫秒
991.
Principles of quantitative absorbance measurements in anisotropic crystals   总被引:1,自引:0,他引:1  
The accurate measurement of absorbance (A=-log T; T=I/I 0) in anisotropic materials like crystals is highly important for the determination of the concentration and orientation of the oscillator (absorber) under investigation. The absorbance in isotropic material is linearly dependent on the concentration of the absorber and on the thickness of the sample (A=?·c·t). Measurement of absorbance in anisotropic media is more complicated, but it can be obtained from polarized spectra (i) on three random, but orthogonal sections of a crystal, or (ii) preferably on two orthogonal sections oriented parallel to each of two axes of the indicatrix ellipsoid. To compare among different crystal classes (including cubic symmetry) it is useful to convert measured absorbance values to one common basis (the total absorbance A tot), wherein all absorbers are corrected as if they were aligned parallel to the E-vector of the incident light. The total absorption coefficient (a tot=A tot/t) is calculated by $$\left( {\text{i}} \right)a_{{\text{tot}}} = \sum\limits_{i = 1}^3 {(a_{\max ,i} + a_{\min ,i} )} /2, {\text{or}} {\text{by}} {\text{(ii) }}a_{{\text{tot}}} = a_x + a_y + a_z .$$ Only in special circumstances will unpolarized measurements of absorbance provide data useful for quantitative studies of anisotropic material. The orientation of the absorber with respect to the axes of the indicatrix ellipsoid is calculated according to A x/A tot=cos2 (x < absorber), and analogously for A yand A z. In this way, correct angles are obtained for all cases of symmetry. The extinction ratio of the polarizer (Pe=I crossed/I parallel) has considerable influence on the measured amplitude of absorption bands, especially in cases of strong anisotropic absorbance. However, if Pe is known, the true absorbance values can be calculated even with polarizers of low extinction ratio, according to A max=?log[(T max,obs?0.5·Pe·T min,obs)/(1?0.5·Pe)], and similar for A min. The theoretical approach is confirmed by measurements on calcite and topaz.  相似文献   
992.
993.
The H-atom environment in a Tilly Foster chondrodite was analyzed using single-crystal neutron-diffraction data collected at 500, 700 and 900 K and previously published low temperature data collected at 10, 100 and 300 K on the same crystal (Mg4.64Fe0.28Mn0.014Ti0.023(Si1.01O4)2F1.16(OH)0.84; Friedrich et al. in Am Mineral 86:981–989, 2001). The full mean square displacement matrix Σ of the O–H pair was determined from the temperature dependence of the anisotropic displacement parameters, enabling a proper correction of the O–H bond for thermal vibration without assumptions about the correlation of O and H movements. The results show that the perpendicular O–H motions in chondrodite are intermediate between the riding and the independent motion models. The corrected O–H bond lengths do not change with temperature whereas the corrected H···F distances show an increase of ~0.02 Å with temperature, as do the Mg–O distances. This result shows that spectroscopic observations on the strength of the covalent O–H bond cannot be interpreted unambiguously in terms of a corresponding behaviour of the associated H···O/F hydrogen bond.  相似文献   
994.
Lawsonite eclogites preserve a record of very-low-temperature conditions in subduction zones. All occur at active margin settings, typically characterized by accretionary complexes lithologies and as tectonic blocks within serpentinite-matrix mélange. Peak lawsonite-eclogite facies mineral assemblages (garnet + omphacite + lawsonite + rutile) typically occur in prograde-zoned garnet porphyroblasts. Their matrix is commonly overprinted by higher-temperature epidote-bearing assemblages; greenschist- or amphibolite-facies conditions erase former lawsonite-eclogite relics. Various pseudomorphs after lawsonite occur, particularly in some blueschist/eclogite transitional facies rocks. Coesite-bearing lawsonite-eclogite xenoliths in kimberlitic pipes and lawsonite pseudomorphs in some relatively low-temperature ultrahigh-pressure eclogites are known. Using inclusion assemblages in garnet, lawsonite eclogites can be classified into two types: L-type, such as those from Guatemala and British Columbia, contain garnet porphyroblasts that grew only within the lawsonite stability field and E-type, such as from the Dominican Republic, record maximum temperature in the epidote-stability field.

Formation and preservation of lawsonite eclogites requires cold subduction to mantle depths and rapid exhumation. The earliest occurrences of lawsonite-eclogite facies mineral assemblages are Early Paleozoic in Spitsbergen and the New England fold belt of Australia; this suggests that since the Phanerozoic, secular cooling of Earth and subduction-zone thermal structures evolved the necessary high pressure/temperature conditions. Buoyancy of serpentinite and oblique convergence with a major strike-slip component may facilitate the exhumation of lawsonite eclogites from mantle depths.  相似文献   

995.
Shallow marine sediments of the Buyat-Ratototok district of North Sulawesi, Indonesia, are affected by submarine disposal of industrial gold mine tailings and small-scale gold mining using mercury amalgamation. Industrial mine tailings contained 590–660 ppm arsenic, 490–580 ppm antimony, and 0.8–5.8 ppm mercury. Electron microprobe survey found both colloidal iron–arsenic-phases without sulphur and arsenian pyrite in tailings and sites to which tailings had dispersed, but only arsenopyrite in sediments affected by artisanal mining. Antimony in tailings was present as antimony oxides, colloidal iron–antimony phases, colloidal iron–antimony phases, and stibnite in sediments affected by both types of mining. A sequential extraction found that 2% of arsenic held in tailings and tailings-contaminated sediments was exchangeable, 20–30% was labile, including weakly adsorbed, carbonate- and arsenate bound, 20–30% was metastable, probably incorporated into iron or manganese oxyhydroxides, or strongly adsorbed to silicate minerals, and 40–48% was relatively insoluble, probably incorporated into sulphides or silicates. Arsenic in sediments affected by artisanal gold mining was 75–95% relatively insoluble. Antimony in all sediments was >90% relatively insoluble. Relative solubility patterns of most other metals did not differ between industrial tailings-affected, artisanal-mining affected areas, and fluvial sediments. Results suggest that submarine tailings disposal is not suitable for refractory Carlin-like gold deposits because ore processing converts arsenic to forms unstable in anoxic marine sediments. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   
996.
997.
Parsimonious post‐stack migration is extended to three dimensions. By tracing single rays back along each incident wave direction (as determined by a local slant stack at the receivers), the ray tracing can be embedded in the migration. This approach significantly reduces the computer time and disk space needed because it is not necessary to build and save image time maps; 3D migration can be performed on a workstation or personal computer rather than using a supercomputer or cluster. The location of a reflector in the output image is defined by tracing a zero‐offset ray to the one‐way traveltime (the image condition); the orientation of the reflector is defined as a surface perpendicular to the raypath. The migration impulse response operator is confined to the first Fresnel zone around the estimated reflection point, which is much smaller than the large isochronic surface in traditional Kirchhoff depth migration. Additional efficiency is obtained by applying an amplitude threshold to reduce the amount of data to be migrated. Tests on synthetic data show that the proposed implementation of parsimonious 3D post‐stack Kirchhoff depth migration is at least two orders of magnitude faster than traditional Kirchhoff migration, at the expense of slightly degraded migration image coherence. The proposed migration is expected to be a useful complement to conventional time migrations for fast initial imaging of subsurface structures and for real‐time imaging of near‐offset sections during data acquisition for quality control.  相似文献   
998.
During the 1999 Athens Earthquake the town of Adàmes, located on the eastern cliff of the Kifissos river canyon, experienced unexpectedly heavy damage. Despite the significant amplification potential of the slope geometry, topography effects cannot alone explain the uneven damage distribution within a 300 m zone behind the crest, characterized by a rather uniform structural quality. This paper illustrates the important role of soil stratigraphy, material heterogeneity, and soil–structure interaction on the characteristics of ground surface motion. For this purpose, we first perform elastic two-dimensional wave propagation analyses utilizing available geotechnical and seismological data, and validate our results by comparison with aftershock recordings. We then conduct non-linear time-domain simulations that include spatial variability of soil properties and soil–structure interaction effects, to reveal their additive contribution in the topographic motion aggravation.  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号