首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   5篇
  国内免费   6篇
测绘学   13篇
大气科学   7篇
地球物理   37篇
地质学   71篇
天文学   8篇
综合类   1篇
自然地理   7篇
  2024年   1篇
  2023年   1篇
  2022年   6篇
  2021年   3篇
  2020年   5篇
  2019年   3篇
  2018年   12篇
  2017年   9篇
  2016年   11篇
  2015年   4篇
  2014年   5篇
  2013年   9篇
  2012年   5篇
  2011年   2篇
  2010年   5篇
  2009年   7篇
  2008年   2篇
  2007年   2篇
  2006年   4篇
  2005年   6篇
  2004年   4篇
  2003年   4篇
  2002年   4篇
  2001年   4篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1992年   1篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1983年   4篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有144条查询结果,搜索用时 15 毫秒
41.
Abstract

This study presents the first comprehensive nationwide trend detection of streamflow in Nepal, a country that has been historically understudied despite its critical location as the southern pathway for most of the Himalayan snowpack melt and torrential seasonal monsoon rains. We applied Mann-Kendall and Sen's trend tests using trend-free pre-whitening and bootstrap approaches to two streamflow data sets to deal with serial and cross-correlation. The two data sets comprised 23–33 hydrometric stations with 31 years and more than 20 years of published data, respectively. The test on the 33 stations data set showed that 23% of the streamflow variables studied had statistically significant trends, evenly divided between upward and downward trends. Similarly, in the second, relatively smaller data set, 24% of variables exhibited trends, of which 41% were downward and 59% upward. The higher percentage of observed upward trends in pre-monsoon and winter seasonal average flow is noteworthy given the potential snowmelt contribution in many of the studied sites. Trends were mostly absent in stations draining the larger basins. However, some spatial patterns were seen in the observed trend directions, specifically, a downward trend in the Karnali-Mahakali River basin and an upward trend in the West Rapti River basin, as well as a nationwide absence of trend in the post-monsoon season.

Editor Z.W. Kundzewicz

Citation Gautam, M.R. and Acharya, K., 2011. Streamflow trends in Nepal. Hydrological Sciences Journal, 57 (2), 344–357.  相似文献   
42.
Abstract

India has figured with two hotspots ‐ the Western Ghats and the Eastern Himalayas ‐ in an identification of 8 ‘hottest’ biodiversity hotspots (Myers et. al. 2000). The Meghalaya state (study area) in North Eastern India lies within the “Indo‐Burma” area, which is one of the 8 ‘hottest’ biodiversity hotspots. Timber extraction, the age‐old practice of shifting cultivation and mining has been a major cause of extensive changes in this landscape. Human induced disturbance differs from natural disturbance especially in extension, severity and frequency. Spatial presentation of landscape dynamics can be used to infer disturbance regimes horizontally. Disturbance regimes are mostly dominated by landuse practices in Meghalaya and these landuse practices are important contributors for overall interpretation of ecological processes operating within the landscape. In this scenario, the development of models to study landscape dynamics using remote sensing and GIS would be of great importance to ecologists. In this paper, we make an attempt to characterize landscape dynamics using a decision tree based approach. The varying impacts of human interventions reflected in three zones at landscape level have been brought out in the present study. The physiographic zones of Meghalaya (viz. Garo hills, Khasi hills and Jaintia hills) manifest different landscape characteristics and present varying degree of degradation status. Garo hills, experiences maximum shifting cultivation and has shown highest dynamism in the study area followed by Jaintia and Khasi hills. Characterization of landscape dynamics is important in the perspective of decision makers and policy makers in order to prioritize conservation strategies, so that urgent and necessary action can be taken.  相似文献   
43.
Accurate estimation of aquifer parameters, especially from crystalline hard rock area, assumes a special significance for management of groundwater resources. The aquifer parameters are usually estimated through pumping tests carried out on water wells. While it may be costly and time consuming for carrying out pumping tests at a number of sites, the application of geophysical methods in combination with hydro-geochemical information proves to be potential and cost effective to estimate aquifer parameters. Here a method to estimate aquifer parameters such as hydraulic conductivity, formation factor, porosity and transmissivity is presented by utilizing electrical conductivity values analysed via hydro-geochemical analysis of existing wells and the respective vertical electrical sounding (VES) points of Sindhudurg district, western Maharashtra, India. Further, prior to interpolating the distribution of aquifer parameters of the study area, variogram modelling was carried out using data driven techniques of kriging, automatic relevance determination based Bayesian neural networks (ARD-BNN) and adaptive neuro-fuzzy neural networks (ANFIS). In total, four variogram model fitting techniques such as spherical, exponential, ARD-BNN and ANFIS were compared. According to the obtained results, the spherical variogram model in interpolating transmissivity, ARD-BNN variogram model in interpolating porosity, exponential variogram model in interpolating aquifer thickness and ANFIS variogram model in interpolating hydraulic conductivity outperformed rest of the variogram models. Accordingly, the accurate aquifer parameters maps of the study area were produced by using the best variogram model. The present results suggest that there are relatively high value of hydraulic conductivity, porosity and transmissivity at Parule, Mogarne, Kudal, and Zarap, which would be useful to characterize the aquifer system over western Maharashtra.  相似文献   
44.
Two lumped conceptual hydrological models, namely tank and NAM and a neural network model are applied to flood forecasting in two river basins in Thailand, the Wichianburi on the Pasak River and the Tha Wang Pha on the Nan River using the flood forecasting procedure developed in this study. The tank and NAM models were calibrated and verified and found to give similar results. The results were found to improve significantly by coupling stochastic and deterministic models (tank and NAM) for updating forecast output. The neural network (NN) model was compared with the tank and NAM models. The NN model does not require knowledge of catchment characteristics and internal hydrological processes. The training process or calibration is relatively simple and less time consuming compared with the extensive calibration effort required by the tank and NAM models. The NN model gives good forecasts based on available rainfall, evaporation and runoff data. The black‐box nature of the NN model and the need for selecting parameters based on trial and error or rule‐of‐thumb, however, characterizes its inherent weakness. The performance of the three models was evaluated statistically. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
45.
46.
47.
 Two types of melt pockets occur in Hawaiian mantle xenoliths: amphibole-bearing (AMP) and spinel-bearing (SMP). AMPs contain amphibole (kaersutite), olivine (Fo92), clinopyroxene (with 7–11% Al2O3), vesicles and glass. SMPs contain olivine, clinopyroxene, spinel, glass, and vesicles. The glasses in SMPs (SiO2=44–45%, 11–12% alkalis, La=90–110 ppm) and AMPs (SiO2=49–54%, 6–8.5% alkalis, La=8–14 ppm) are distinct in color and composition. Both glasses are generally characterized by LREE-enriched (chondrite-normalized) patterns. Amphibole and clinopyroxene have gently convex upward-to-moderately LREE-enriched patterns. Mineral/glass trace element abundance ratio plots show a strong negative Ti anomaly and a gentle negative Zr anomaly for clinopyroxene/glass; whereas amphibole/glass patterns show a distinctive positive Ti spike. The amphibole/glass trace element ratios are similar to published megacryst/lava values. An earlier study showed that the Hawaiian spinel lherzolites (lithosphere) have largely been metasomatized during post-erosional Honolulu magmatic activity. REE abundances of SMP glasses (melts) overlap the REE abundances calculated for such metasomes. The occurrence of hydrous, alkaline, mafic melt pockets in Hawaiian upper mantle xenoliths implies that (1) such hydrous liquids are generated in the upper mantle, and (2) water plays a role in magmatic activity associated with the Hawaiian plume. Although we are uncertain about the source (plume, lithosphere, or asthenosphere) of this water, we speculate that such melts and other alkalic lavas erupted on Oahu and on the sea-floor over the Hawaiian arch were generated from a broad „wet“ rim of a radially layered Hawaiian plume, whose hot and „dry“ core supplied the shield-forming magmas. Received: 6 February 1995 / Accepted: 28 August 1995  相似文献   
48.
John D. Monnier  Stefan Kraus  Michael J. Ireland  Fabien Baron  Amelia Bayo  Jean-Philippe Berger  Michelle Creech-Eakman  Ruobing Dong  Gaspard Duchêne  Catherine Espaillat  Chris Haniff  Sebastian Hönig  Andrea Isella  Attila Juhasz  Lucas Labadie  Sylvestre Lacour  Stephanie Leifer  Antoine Merand  Ernest Michael  Stefano Minardi  Christoph Mordasini  David Mozurkewich  Johan Olofsson  Claudia Paladini  Romain Petrov  Jörg-Uwe Pott  Stephen Ridgway  Stephen Rinehart  Keivan Stassun  Jean Surdej  Theo ten Brummelaar  Neal Turner  Peter Tuthill  Kerry Vahala  Gerard van Belle  Gautam Vasisht  Ed Wishnow  John Young  Zhaohuan Zhu 《Experimental Astronomy》2018,46(3):517-529
The Planet Formation Imager (PFI, www.planetformationimager.org) is a next-generation infrared interferometer array with the primary goal of imaging the active phases of planet formation in nearby star forming regions. PFI will be sensitive to warm dust emission using mid-infrared capabilities made possible by precise fringe tracking in the near-infrared. An L/M band combiner will be especially sensitive to thermal emission from young exoplanets (and their disks) with a high spectral resolution mode to probe the kinematics of CO and H2O gas. In this paper, we give an overview of the main science goals of PFI, define a baseline PFI architecture that can achieve those goals, point at remaining technical challenges, and suggest activities today that will help make the Planet Formation Imager facility a reality.  相似文献   
49.
Dam-related downstream adjustments of riverbeds are normally investigated by analysing the trend in sediment supply and high flow events during the pre- and post-dam periods. The required data for existing predictive models is not measured at river gauges, which limits the application of these tools. We derived the frequency of sediment-transporting streamflow events (T*) and upstream sediment supply (S*) in the pre- and post-dam periods with widely available gauged records and predicted changes in the downstream riverbed by adapting an existing model. Ten gauging stations in the Godavari River Basin, India, located downstream of dams, were chosen as study sites. Annually surveyed cross-sections at each site validated the accuracy of the predicted dam-related downstream changes. Then, a regression equation (R2 = 0.75) was established between T*/S* (independent variable) and changes in the downstream bed elevation (dependent variable) for the Godavari Basin. We recommended that similar local empirical equations be formulated for larger river basins. Models of large-scale rainfall-runoff and sediment transport processes that can account for the influence of dams, such as the Soil & Water Assessment Tool, can be paired with the proposed regression equation to estimate dam-related downstream erosion and deposition with globally available data.  相似文献   
50.
Magnetostratigraphic research, undertaken within the past 15 years in the Siwaliks distributed along 400 km of the Sub-Himalaya in central Nepal, has proved that the sediments possess highly reliable hematite-based primary detrital remanent magnetization suitable to determine depositional chronology. In order to bring out the polarity sequences in a common chronological frame, all available data are newly correlated to the latest global magnetic polarity time scale of Cande and Kent (S.C. Cande, D.V. Kent (1995) Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. Journal of Geophysical Research 100, 6093–6095). Chronological data presented are referred, in relation to the diverse lithological nomenclature, to the formations whose ages are not constrained by isotopic or paleontologic ages. The age of the sections dated by magnetostratigraphy ranges between 14 and <2 Ma. Sediment accumulation rates average to 32–50 cm kyr−1. Rock-magnetic parameters, e.g. initial susceptibility and isothermal remanent magnetization ratios, allow correlation with an accuracy of up to a few hundred meters among several kilometers thick adjacent sections. Anisotropy of magnetic susceptibility (AMS) data reveal a well-defined fabric contributed to by paramagnetic (k=10−5 to 3×10−4 SI) as well as ferromagnetic minerals (k=3×10−4 to 10−2 SI). AMS ellipsoids are mainly oblate along with some prolate ones and the degree of anisotropy is mostly low (P′<1.2). The magnetic fabric is of pre-folding origin with tilt-corrected sub-vertical magnetic foliation poles. The magnetic lineations do not show parallelism to the expected paleocurrent directions. Rather, sub-parallelism between the clusters of magnetic lineation and the fold axes/bedding strikes/thrust fronts is observed. A superimposed fabric consisting of a sedimentary-compactional and an overprint induced by a mild deformation process is suggested. The latter process was active during, and subsequent to, the deposition in the compressive tectonic setting of the foreland basin. The magnetic lineations for Tinau Khola and Surai Khola sections cluster around N80°W and N88°W respectively, whereas N27°W trend characterizes the Amiliya-Tui area south of Dang. The peak clusters in lineations are probably orthogonal to the true shortening axes. Their variation along the Sub-Himalaya, together with the fold axes or thrust front trends, may be used for accurate tectonic reconstruction. It is especially important when the orthogonality of the latter to the shortening axes may not hold true in the sectors with imbricate fold-and-thrust structures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号