排序方式: 共有137条查询结果,搜索用时 15 毫秒
31.
32.
Mallika K.Jonnalagadda Mathieu Benoit Shivani Harshe Romain Tilhac Raymond A.Duraiswami Michel Grégoire Nitin R.Karmalkar 《地学前缘(英文版)》2022,(1):326-349
The Spontang Ophiolite complex represents the most complete ophiolite sequence amongst the South Ladakh ophiolites and comprises mantle rocks(depleted harzburgites,dunites and minor lherzolites)as well as crustal rocks(basalt,isotropic gabbros,layered gabbros etc.).In the present study,detailed geochemistry(whole rock as well as mineral chemistry)and Sr-Nd isotopic analyses of thirty-six ultramaficmafic samples have been attempted to constraint the evolution and petrogenetic history of the Tethyan oceanic crust.Major,trace-element and REE patterns of the peridotites and their minerals indicate that the lherzolites experienced lower degrees of partial melting resembling abyssal peridotites(at higher temperatures,TREE=$1216℃)than the harzburgites(6%–8%versus 15%–17%).Elevated eNd(t)and variable87 Sr/86 Sr(t)ratios along with REE patterns suggest that the Spontang mafic rocks display N-MORB affinity with negligible participation of oceanic sediments in their genesis are originated from a depleted upper mantle with little contribution from subduction-related fluids.MORB-type Neotethyan oceanic crust is associated with the earliest phase of subduction(of older Jurassic age)through which a younger intra-oceanic island arc(Spong arc)subsequently developed.Harzburgites REE display typical U-shaped patterns,suggesting that these rocks have been metasomatized by LREE-enriched fluids.On the other side,mafic rocks are characterized by heterogeneous(Nb/La)PMand(Hf/Sm)PMand relatively homogeneous eNd(t),indicating interaction of subduction-related melts with the upper mantle during the initiation of subduction,in Early Cretaceous times. 相似文献
33.
Eric Martin Simon Gascoin Youen Grusson Clément Murgue Mélanie Bardeau François Anctil Sylvain Ferrant Romain Lardy Patrick Le Moigne Delphine Leenhardt Vincent Rivalland José-Miguel Sánchez Pérez Sabine Sauvage Olivier Therond 《Surveys in Geophysics》2016,37(2):223-247
Natural and anthropogenic forcing factors and their changes significantly impact water resources in many river basins around the world. Information on such changes can be derived from fine scale in situ and satellite observations, used in combination with hydrological models. The latter need to account for hydrological changes caused by human activities to correctly estimate the actual water resource. In this study, we consider the catchment area of the Garonne river (in France) to investigate the capabilities of space-based observations and up-to-date hydrological modeling in estimating water resources of a river basin modified by human activities and a changing climate. Using the ISBA–MODCOU and SWAT hydrological models, we find that the water resources of the Garonne basin display a negative climate trend since 1960. The snow component of the two models is validated using the moderate-resolution imaging spectroradiometer snow cover extent climatology. Crop sowing dates based on remote sensing studies are also considered in the validation procedure. Use of this dataset improves the simulated evapotranspiration and river discharge amounts when compared to conventional data. Finally, we investigate the benefit of using the MAELIA multi-agent model that accounts for a realistic agricultural and management scenario. Among other results, we find that changes in crop systems have significant impacts on water uptake for agriculture. This work constitutes a basis for the construction of a future modeling framework of the sociological and hydrological system of the Garonne river region. 相似文献
34.
Numerical investigation of alternative fracture stiffness measures and their respective scaling behaviours 下载免费PDF全文
We study the mechanical deformation of fractures under normal stress, via tangent and specific fracture stiffnesses, for different length scales using numerical simulations and analytical insights. First, we revisit an equivalent elastic layer model that leads to two expressions: the tangent stiffness is the sum of an “intrinsic” stiffness and the normal stress, and the specific stiffness is the tangent stiffness divided by the fracture aperture at current stress. Second, we simulate the deformation of rough fractures using a boundary element method where fracture surfaces represented by elastic asperities on an elastic half‐space follow a self‐affine distribution. A large number of statistically identical “parent” fractures are generated, from which sub‐fractures of smaller dimensions are extracted. The self‐affine distribution implies that the stress‐free fracture aperture increases with fracture length with a power law in agreement with the chosen Hurst exponent. All simulated fractures exhibit an increase in the specific stiffness with stress and an average decrease with increase in length consistent with field observations. The simulated specific and tangent stiffnesses are well described by the equivalent layer model provided the “intrinsic” stiffness slightly decreases with fracture length following a power law. By combining numerical simulations and the analytical model, the effect of scale and stress on fracture stiffness measures can be easily separated using the concept of “intrinsic” stiffness. We learn that the primary reason for the variability in specific stiffness with length comes from the fact that the typical aperture of the self‐affine fractures itself scales with the length of the fractures. 相似文献
35.
A von Neumann stability analysis of the discretized conservation equation for single-phase porous media flows is performed, where non-Newtonian and non-Darcy effects are accounted for using a velocity (or mass flux)-dependent mobility factor. Comprehensive results in three dimensions for two low-order finite-volume discretizations typically encountered in reservoir simulation are provided, based on edge-centered and upstream cell-centered mobility calculations. It is found that common semi-implicit schemes, where the pressure gradient driving the flow is taken implicitly while the velocity-dependent mobility is evaluated explicitly, are subject to restrictions on the logarithmic derivative of mobility with respect to velocity. A remarkable new result is nevertheless obtained: for any physically acceptable strength of non-Newtonian and non-Darcy effects, there exists a stable and explicit method to evaluate the mobility, rendering the need to implement costly fully implicit schemes more difficult to justify. 相似文献
36.
37.
38.
Hydrogeology Journal - Adequate groundwater management requires models capable of representing the heterogeneous nature of aquifers. A key point is the theoretical knowledge of flow behaviour in... 相似文献
39.
Romain Vaucher Bernard Pittet Hélène Hormière Emmanuel L. O. Martin Bertrand Lefebvre 《Sedimentology》2017,64(3):777-807
Hybrid depositional systems are created by the interaction of two or more hydrodynamic processes that control facies distribution and their characteristics in terms of sedimentary structures and depositional geometry. The interaction of wave and tide both in the geological sedimentary record and modern environments has been rarely described in the literature. Mixed coastal environments are identified by the evidence of wave and tidal structures and are well identified in nearshore environments, while their recognition in lower shoreface–offshore environments lacks direct information from modern settings. Detailed field analyses of 10 stratigraphic sections of the Lower Ordovician succession (Fezouata and Zini formations; Anti‐Atlas, Morocco) have allowed the definition of 14 facies, all grouped in four facies zones belonging to a storm‐dominated, wave‐dominated sedimentary siliciclastic system characterized by symmetrical ripples of various scales. Peculiar sedimentary organization and sedimentary structures are observed: (i) cyclical changes in size of sedimentary structures under fair‐weather or storm‐weather conditions; (ii) decimetre‐deep erosional surfaces in swaley cross‐stratifications; (iii) deep internal erosion within storm deposits; (iv) discontinuous sandstone layers in most depositional environments, and common deposition of sandstones with a limited lateral extension, interpreted to indicate that deposition at all scales (metric to kilometric) is discontinuous; (v) combined flow–oscillation ripples showing aggrading–prograding internal structures alternating with purely aggrading wave ripples; and (vi) foreshore environments characterized by alternating phases of deposition of parallel stratifications, small‐scale and large‐scale ripples and tens of metres‐wide reactivation surfaces. These characteristics of deposition suggest that wave intensity during storm‐weather or fair‐weather conditions was continuously modulated by another controlling factor of the sedimentation: the tide. However, tidal structures are not recognized, because they were probably not preserved due to dominant action of storms and waves. A model of deposition is provided for this wave‐dominated, tide‐modulated sedimentary system recording proximal offshore to intertidal–foreshore environments, but lacking diagnostic tidal structures. 相似文献
40.
Catherine Rio Jean-Yves Grandpeix Frédéric Hourdin Francoise Guichard Fleur Couvreux Jean-Philippe Lafore Ann Fridlind Agnieszka Mrowiec Romain Roehrig Nicolas Rochetin Marie-Pierre Lefebvre Abderrahmane Idelkadi 《Climate Dynamics》2013,40(9-10):2271-2292
Recently, a new conceptual framework for deep convection scheme triggering and closure has been developed and implemented in the LMDZ5B general circulation model, based on the idea that deep convection is controlled by sub-cloud lifting processes. Such processes include boundary-layer thermals and evaporatively-driven cold pools (wakes), which provide an available lifting energy that is compared to the convective inhibition to trigger deep convection, and an available lifting power (ALP) at cloud base, which is used to compute the convective mass flux assuming the updraft vertical velocity at the level of free convection. While the ALP closure was shown to delay the local hour of maximum precipitation over land in better agreement with observations, it results in an underestimation of the convection intensity over the tropical ocean both in the 1D and 3D configurations of the model. The specification of the updraft vertical velocity at the level of free convection appears to be a key aspect of the closure formulation, as it is weaker over tropical ocean than over land and weaker in moist mid-latitudes than semi-arid regions. We propose a formulation making this velocity increase with the level of free convection, so that the ALP closure is adapted to various environments. Cloud-resolving model simulations of observed oceanic and continental case studies are used to evaluate the representation of lifting processes and test the assumptions at the basis of the ALP closure formulation. Results favor closures based on the lifting power of sub-grid sub-cloud processes rather than those involving quasi-equilibrium with the large-scale environment. The new version of the model including boundary-layer thermals and cold pools coupled together with the deep convection scheme via the ALP closure significantly improves the representation of various observed case studies in 1D mode. It also substantially modifies precipitation patterns in the full 3D version of the model, including seasonal means, diurnal cycle and intraseasonal variability. 相似文献