首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72597篇
  免费   751篇
  国内免费   496篇
测绘学   1674篇
大气科学   4199篇
地球物理   14405篇
地质学   26326篇
海洋学   6451篇
天文学   17513篇
综合类   183篇
自然地理   3093篇
  2022年   603篇
  2021年   926篇
  2020年   1016篇
  2019年   1079篇
  2018年   2332篇
  2017年   2128篇
  2016年   2398篇
  2015年   1120篇
  2014年   2219篇
  2013年   3746篇
  2012年   2503篇
  2011年   3166篇
  2010年   2909篇
  2009年   3631篇
  2008年   3146篇
  2007年   3283篇
  2006年   2987篇
  2005年   1957篇
  2004年   1887篇
  2003年   1811篇
  2002年   1716篇
  2001年   1613篇
  2000年   1447篇
  1999年   1148篇
  1998年   1198篇
  1997年   1190篇
  1996年   970篇
  1995年   986篇
  1994年   889篇
  1993年   770篇
  1992年   734篇
  1991年   742篇
  1990年   838篇
  1989年   723篇
  1988年   661篇
  1987年   794篇
  1986年   636篇
  1985年   862篇
  1984年   941篇
  1983年   883篇
  1982年   805篇
  1981年   810篇
  1980年   711篇
  1979年   643篇
  1978年   679篇
  1977年   600篇
  1976年   562篇
  1975年   571篇
  1974年   540篇
  1973年   606篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
Meretta Lake (Resolute Bay, Cornwallis Island, Nunavut, Canada) is a high arctic lake that received raw sewage for almost 50 years from the Canadian Department of Transport Base. The lake was sampled from 1968–72 during the International Biological Programme, as part of the Char Lake Project. As the number of users at the Transport Base declined throughout the 1990s, so too did the lake's nutrient levels, and Meretta Lake is now classified as oligotrophic. A previous diatom-based paleolimnological study revealed marked species assemblage shifts coincident with sewage inputs beginning in the late 1940s; however, because the core was taken at a time when nutrient levels were still relatively high (i.e., 1993), the diatom record did not yet track any signs of recovery. In this present study, we examined fossil diatom assemblages from a sediment core taken in 2001. Our results indicate a shift to the pre-impact diatom assemblages in the most recent sediments, indicating that the paleolimnological record is tracking the decreased nutrient inputs to this high arctic lake, and confirms that no significant lags exist in these largely ice-covered lakes.  相似文献   
993.
994.
In metacarbonates of the Lesser (LH) and Tethyan (TH) Himalayas of Kumaon/Garhwal (N-India) characteristic remanent magnetisations carried by pyrrhotite (unblocking temperatures: 250-330°C) and magnetite (demagnetising spectra: 15-50 mT) have been identified. Negative fold tests indicate remanence acquisition after the main folding phase, which is of short-wavelength character and occurs during the early orogenese of the Himalayas. A thermal or thermochemical origin of magnetisation is likely and the age of remanence acquisition is indicated to be about 40 Ma by 40K/39Ar cooling and 40Ar/39Ar crystallisation ages. In the Kumaon LH a long-wavelength tilting is indicated by a distribution of the remanence directions along a small-circle in N-S direction. Steepening of the remanence directions in the TH related to ramping on the Main Central Thrust (MCT) was not observed, in contrast to other related studies. In the Alaknanda valley of LH a 38±8 Ma age of remanence acquisition is supported by comparison of observed inclinations to the apparent polar wander path of India. Clockwise rotation of 20.3±11.7° (LH/Alaknanda valley) and 11.3±8.5° (TH) with respect to the Indian plate is observed, indicating that there is no significant evidence for rotational shortening along the MCT since about 40 Ma. Our results suggest that most of rotational underthrusting and oroclinal bending has not been accommodated by the MCT, but by the main thrusts south of it. The latest Miocene/Pliocene age of the Main Boundary Thrust indicates that oroclinal bending is a late-orogenic process.  相似文献   
995.
Data on Middle and Upper Devonian deposits studied in southeastern flank of the Siberian platform are considered. A scheme of stratigraphic zoning in the study region is presented. Nineteen sedimentological and biotic events, which are recorded in the studied sections, are of the regional, interregional and global ranks. Their connection with eustatic sea-level fluctuations is established. Sections of the formation and regional horizon stratotypes and parastratotypes are described. The revision of species Mucrospirifer novosibiricus (Toll) is carried out.  相似文献   
996.
997.
Silicified deposits, such as sinters, occur in several modern geothermal environments, but the mechanisms of silicification (and crucially the role of microorganisms in their construction) are still largely unresolved. Detailed examination of siliceous sinter, in particular sections of microstromatolites growing at the Krisuvik hot spring, Iceland, reveals that biomineralization contributes a major component to the overall structure, with approximately half the sinter thickness attributed to silicified microorganisms. Almost all microorganisms observed under the scanning electron microscope (SEM) are mineralized, with epicellular silica ranging in thickness from < 5 μm coatings on individual cells, to regions where entire colonies are cemented together in an amorphous silica matrix tens of micrometres thick. Within the overall profile, there appears to be two very distinct types of laminae that alternate repeatedly throughout the microstromatolite: ‘microbial’ layers are predominantly consisting of filamentous, intact, vertically aligned, biomineralized cyanobacteria, identified as Calothrix and Fischerella sp.; and weakly laminated silica layers which appear to be devoid of any microbial component. The microbial layers commonly have a sharply defined base, overlying the weakly laminated silica, and a gradational upper surface merging into the weakly laminated silica. These cyclic laminations are probably explained by variations in microbial activity. Active growth during spring/summer allows the microorganisms to keep pace with silicification, with the cell surfaces facilitating silicification, while during their natural slow growth phase in the dark autumn/winter months silicification exceeds the bacteria’s ability to compensate (i.e. grow upwards). At this stage, the microbial colony is probably not essential to microstromatolite formation, with silicification presumably occurring abiogenically. When conditions once again become favourable for growth, recolonization of the solid silica surface by free‐living bacteria occurs: cell motility is not responsible for the laminations. We have also observed that microbial populations within the microstromatolite, some several mm in depth, appear viable, i.e. they still have their pigmentation, the trichomes are not collapsed, cell walls are unbroken, cytoplasm is still present and they proved culturable. This suggests that the bulk of silicification occurred rapidly, probably while the cells were still alive. Surprisingly, however, measurements of light transmittance through sections of the microstromatolite revealed that photosynthetically active light (PAL) only transmitted through the uppermost 2 mm. Therefore the ‘deeper’ microbial populations must have either: (i) altered their metabolic pathways; (ii) become metabolically inactive; or (iii) the deeper populations may be dominated by different microbial assemblages from that of the surface. From these collective observations, it now seems unequivocal that microstromatolite formation is intimately linked to microbial activity and that the sinter fabric results from a combination of biomineralization, cell growth and recolonization. Furthermore, the similarities in morphology and microbial component to some Precambrian stromatolites, preserved in primary chert, suggests that we may be witnessing contemporaneous biomineralization processes and growth patterns analogous to those of the early Earth.  相似文献   
998.
1 IntroductionThe study area is part of the Obudu Plateau,which forms part of the Precambrian Pan-African tec-tonothermal belt, lying between the West African Cra-ton and the Gabon-Congo Craton ( Fig. 1). It isbounded by the Benue Trough, in the NE-SW axi…  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号