首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101960篇
  免费   1499篇
  国内免费   897篇
测绘学   2472篇
大气科学   7016篇
地球物理   20458篇
地质学   36186篇
海洋学   8790篇
天文学   23416篇
综合类   271篇
自然地理   5747篇
  2022年   549篇
  2021年   966篇
  2020年   1059篇
  2019年   1114篇
  2018年   2565篇
  2017年   2378篇
  2016年   2956篇
  2015年   1748篇
  2014年   2919篇
  2013年   5296篇
  2012年   3104篇
  2011年   4228篇
  2010年   3655篇
  2009年   4925篇
  2008年   4414篇
  2007年   4227篇
  2006年   3987篇
  2005年   3141篇
  2004年   3081篇
  2003年   2872篇
  2002年   2678篇
  2001年   2466篇
  2000年   2340篇
  1999年   1936篇
  1998年   2031篇
  1997年   1941篇
  1996年   1596篇
  1995年   1631篇
  1994年   1389篇
  1993年   1278篇
  1992年   1241篇
  1991年   1154篇
  1990年   1300篇
  1989年   1104篇
  1988年   1016篇
  1987年   1270篇
  1986年   1039篇
  1985年   1332篇
  1984年   1456篇
  1983年   1406篇
  1982年   1272篇
  1981年   1199篇
  1980年   1058篇
  1979年   986篇
  1978年   1005篇
  1977年   904篇
  1976年   885篇
  1975年   835篇
  1974年   822篇
  1973年   834篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Systematic errors at harmonics of the GPS draconitic year have been found in diverse GPS-derived geodetic products like the geocenter $Z$ -component, station coordinates, $Y$ -pole rate and orbits (i.e. orbit overlaps). The GPS draconitic year is the repeat period of the GPS constellation w.r.t. the Sun which is about 351 days. Different error sources have been proposed which could generate these spurious signals at the draconitic harmonics. In this study, we focus on one of these error sources, namely the radiation pressure orbit modeling deficiencies. For this purpose, three GPS+GLONASS solutions of 8 years (2004–2011) were computed which differ only in the solar radiation pressure (SRP) and satellite attitude models. The models employed in the solutions are: (1) the CODE (5-parameter) radiation pressure model widely used within the International GNSS Service community, (2) the adjustable box-wing model for SRP impacting GPS (and GLONASS) satellites, and (3) the adjustable box-wing model upgraded to use non-nominal yaw attitude, specially for satellites in eclipse seasons. When comparing the first solution with the third one we achieved the following in the GNSS geodetic products. Orbits: the draconitic errors in the orbit overlaps are reduced for the GPS satellites in all the harmonics on average 46, 38 and 57 % for the radial, along-track and cross-track components, while for GLONASS satellites they are mainly reduced in the cross-track component by 39 %. Geocenter $Z$ -component: all the odd draconitic harmonics found when the CODE model is used show a very important reduction (almost disappearing with a 92 % average reduction) with the new radiation pressure models. Earth orientation parameters: the draconitic errors are reduced for the $X$ -pole rate and especially for the $Y$ -pole rate by 24 and 50 % respectively. Station coordinates: all the draconitic harmonics (except the 2nd harmonic in the North component) are reduced in the North, East and Height components, with average reductions of 41, 39 and 35 % respectively. This shows, that part of the draconitic errors currently found in GNSS geodetic products are definitely induced by the CODE radiation pressure orbit modeling deficiencies.  相似文献   
992.
We examine the relationship between source position stability and astrophysical properties of radio-loud quasars making up the International Celestial Reference Frame (ICRF2). Understanding this relationship is important for improving quasar selection and analysis strategies, and therefore reference frame stability. We construct flux density time series, known as light curves, for 95 of the most frequently observed ICRF2 quasars at both the 2.3 and 8.4 GHz geodetic very long baseline interferometry (VLBI) observing bands. Because the appearance of new quasar components corresponds to an increase in quasar flux density, these light curves alert us about potential changes in source structure before they appear in VLBI images. We test how source position stability depends on three astrophysical parameters: (1) flux density variability at X band; (2) time lag between flares in S and X bands; (3) spectral index root-mean-square (rms), defined as the variability in the ratio between S and X band flux densities. We find that the time lag between S and X band light curves provides a good indicator of position stability: sources with time lags $<$ 0.06 years are significantly more stable ( $>$ 20 % improvement in weighted rms) than sources with larger time lags. A similar improvement is obtained by observing sources with low $(<$ 0.12) spectral index variability. On the other hand, there is no strong dependence of source position stability on flux density variability in a single frequency band. These findings can be understood by interpreting the time lag between S and X band light curves as a measure of the size of the source structure. Monitoring of source flux density at multiple frequencies therefore appears to provide a useful probe of quasar structure on scales important to geodesy. The observed astrometric position of the brightest quasar component (the core) is known to depend on observing frequency. We show how multi-frequency flux density monitoring may allow the dependence on frequency of the relative core positions along the jet to be elucidated. Knowledge of the position–frequency relation has important implications for current and future geodetic VLBI programs, as well as the alignment between the radio and optical celestial reference frames.  相似文献   
993.
Since last few decades RS-GIS is playing vital role in studying and mapping spatiotemporal responses of land cover, however, as a matter of fact, the mapping outputs largely depend on the expert's/user's preferences because location specific and people specific land cover classification systems are adopted autonomously for image classification in GIS. This may actually lead to an ambiguous definition of a particular land cover type when such different maps are compared at global level. In 1993, FAO and UNEP started efforts for development of a software tool know as LCCS which is a comprehensive standardized tool capable of providing land cover characterization to all possible land cover types in the world regardless of spatial relevance, mapping scale, data collection method etc. Adding to the global efforts of land cover legend harmonization and mapping, this study presents development of harmonized land cover legends for Namdapha National Park located in north-eastern Indian Himalayan region using LCCS and subsequent mapping. The potential of Remote Sensing (RS) and Geographical Information Systems (GIS) in forest/land cover mapping is very well recognized. Therefore, adopting the developed harmonized legends for the study area, land cover mapping was done using RS-GIS approach.  相似文献   
994.
The troposphere delay is an important source of error for precise GNSS positioning due to its high correlation with the station height parameter. It has been demonstrated that errors in mapping functions can cause sub-annual biases as well as affect the repeatability of GNSS solutions, which is a particular concern for geophysical studies. Three-dimensional ray-tracing through numerical weather models (NWM) is an excellent approach for capturing the directional and daily variation of the tropospheric delay. Due to computational complexity, its use for positioning purposes is limited, but it is an excellent tool for evaluating current state-of-the-art mapping functions used for geodetic positioning. Many mapping functions have been recommended in the past such as the Niell Mapping Function (NMF), Vienna Mapping Function 1 (VMF1), and the Global Mapping Function (GMF), which have been adopted by most IGS analysis centers. A new Global Pressure Temperature model (GPT2) has also been developed, which has been shown to improve upon the original atmospheric model used for the GMF. Although the mapping functions mentioned above use the same functional formulation, they vary in terms of their atmospheric source and calibration approach. A homogeneous data set of three-dimensional ray-traced delays is used to evaluate all components of the mapping functions, including their underlying functional formulation, calibration, and compression method. Additionally, an alternative representation of the VMF1 is generated using the same atmospheric source as the truth data set to evaluate the differences in ray-tracing methods and their effect on the end mapping function. The results of this investigation continue to support the use of the VMF1 as the mapping function of choice when geodetic parameters are of interest. Further support for the GPT2 and GMF as reliable back-ups when the VMF1 is not available was found due to their high consistency with the NWM-derived mapping function. Additionally, a small latitude-dependent bias in station height was found in the current mapping functions. This bias was identified to be due to the assumption of a constant radius of the earth and was largest at the poles and at the equator. Finally, an alternative version of the VMF1 is introduced, namely the UNB-VMF1 which provides users with an independent NWM-derived mapping function to support geodetic positioning.  相似文献   
995.
We present the new MAP3 algorithms to perform static precise point positioning (PPP) from multifrequency and multisystem GNSS observations. MAP3 represents a two-step strategy in which the least squares theory is applied twice to estimate smoothed pseudo-distances, initial phase ambiguities, and slant ionospheric delay first, and the absolute receiver position and its clock offset in a second adjustment. Unlike the classic PPP technique, in our new approach, the ionospheric-free linear combination is not used. The combination of signals from different satellite systems is accomplished by taking into account the receiver inter-system bias. MAP3 has been implemented in MATLAB and integrated within a complete PPP software developed on site and named PCube. We test the MAP3 performance numerically and contrast it with other external PPP programs. In general, MAP3 positioning accuracy with low-noise GPS dual-frequency observations is about 2.5 cm in 2-h observation periods, 1 cm in 10 h, and 7 mm after 1 day. This means an improvement in the accuracy in short observation periods of at least 7 mm with respect to the other PPP programs. The MAP3 convergence time is also analyzed and some results obtained from real triple-frequency GPS and GIOVE observations are presented.  相似文献   
996.
We investigate daily and sub-daily non-tidal oceanic and atmospheric loading (NTOAL) in the Australian region and put an upper bound on potential site motion examining the effects of tropical cyclone Yasi that crossed the Australian coast in January/February 2011. The dynamic nature of the ocean is important, particularly for northern Australia where the long-term scatter due to daily and sub-daily oceanic changes increases by 20–55 % compared to that estimated using the inverted barometer (IB) assumption. Correcting the daily Global Positioning System (GPS) time series for NTOAL employing either a dynamic ocean model or the IB assumption leads to a reduction of up to 52 % in the weighted scatter of daily coordinate estimates. Differences between the approaches are obscured by seasonal variations in the GPS precision along the northern coast. Two compensating signals during the cyclone require modelling at high spatial and temporal resolution: uplift induced by the atmospheric depression, and subsidence induced by storm surge. The latter dominates ( \(>\) 135 %) the combined net effect that reaches a maximum of 14 mm, and 10 mm near the closest GPS site TOW2. Here, 96 % of the displacement is reached within 15 h due to the rapid transit of cyclones and the quasi-linear nature of the coastline. Consequently, estimating sub-daily NTOAL is necessary to properly account for such a signal that can be 3.5 times larger than its daily-averaged value. We were unable to detect the deformation signal in 2-hourly GPS processing and show that seasonal noise in the Austral summer dominates and precludes GPS detection of the cyclone-related subsidence.  相似文献   
997.
The UAE has witnessed rapid urban development and economic growth in recent years. With its ambitious vision to become one of the advanced nations by 2021, planners and policy-makers need to know the most likely direction of future urban development. In this study, remotely sensed imagery coupled with cellular automata models were used to predict land cover in Al Ain, the second largest city in the Emirate of Abu Dhabi. Markov and cellular automata models were used for 1992 and 2006 to predict land cover in 2012. Land Use and Land Cover maps for the study area were derived from 1992, 2006, and 2012 Landsat satellite images (TM, ETM+). The models achieved an overall accuracy of approximately 80 %. A Markov model was applied for 2006 and 2012 to predict land cover in 2030. The results conformed to the general trend of the Al Ain Master Plan 2030. This study demonstrates that remote sensing, with the availability of free Landsat data, is a viable technology that could be used to help in the prediction process especially in developing countries, where data availability is a problem.  相似文献   
998.
The use of Local Area Coverage (LAC) data from Ocean Color Monitor (OCM) sensor of Oceansat-2 with its high radiometric resolution (12 bits/pixel) and 2-day repeat cycle for rapid monitoring of vegetation growth and estimating surface albedo for the Indian region is demonstrated in this study. For the vegetation monitoring, normalized difference vegetation index (NDVI) and vegetation fraction (VF) products were estimated by maximum value composite approach fortnightly and were resampled to 1 km. The surface albedo products were realized by converting narrow-band eight-band spectral reflectance OCM data to a) visible (300–700 nm) and b) broad band (300–3,000 nm) data. For validation, the derived products were compared with respective MODIS global products and found to be in good agreement.  相似文献   
999.
Efforts to reforest parts of the Kordofan Province of Sudan are receiving support from international development agencies. These efforts include planning and implementing reforestation activities that require the collection of natural resources and socioeconomic data, and the preparation of base maps. A combination of remote sensing, geographic information system and global positioning systems procedures are used in this study to meet these requirements.

Remote sensing techniques were used to provide base maps and to guide the compilation of vegetation resources maps. These techniques provided a rapid and efficient method for documenting available resources. Pocket‐sized global positioning system units were used to establish the location of field data collected for mapping and resource analysis. A microcomputer data management system tabulated and displayed the field data. The resulting system for data analysis, management, and planning has been adopted for the mapping and inventory of the Gum Belt of Sudan.  相似文献   
1000.
Soils of part of Ukai‐kakarapar Command area, Gujarat (India) have been mapped at 1:25, 000 scale using aerial photographs of December 1977. It was observed that about 36.3% of the area was affected by soil salinity/alkalinity. The test area has been remapped using Salyut‐7 space photographs taken during Indo‐Soviet joint flight in April, 1984. The area affected by soil salinity/alkalinity was found to be substantially higher (80.3%). The earlier mapping using aerial photographs was done when the soil surface was compartively moist (December 1977) as compared to date of Salyut‐7 photography (April 1984), when the soil surface was likely to be devoid of moisture and the salts moved to the surface. To have easy comparision with the map prepared by using aerial photographs, Landsat TM data of December, 1985 was used in which 45.7% of the total area was mapped as salt affected. The extent of area delineated using Landsat TM was higher than that of 1977 but much lesser than the area delineated using Salyut‐7 (MKF‐6M) photographs. This indicated that the increase in the extent of salt affected area in the map prepared using the MKF‐6M photographs might be partly due to actual increase in the salinity/alkalinity and partly due to the seasonal affects. Among the various bands of MKF‐6M, band ‐4 was found to be the best for delineating the salt affected soils. The boundaries were sharper in the FCC and band No.4 of MKF‐6M than in the aerial photographs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号