首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101828篇
  免费   1826篇
  国内免费   885篇
测绘学   2471篇
大气科学   7033篇
地球物理   20486篇
地质学   36251篇
海洋学   8813篇
天文学   23419篇
综合类   272篇
自然地理   5794篇
  2022年   549篇
  2021年   954篇
  2020年   1057篇
  2019年   1117篇
  2018年   2569篇
  2017年   2381篇
  2016年   2958篇
  2015年   1747篇
  2014年   2927篇
  2013年   5316篇
  2012年   3106篇
  2011年   4236篇
  2010年   3663篇
  2009年   4936篇
  2008年   4428篇
  2007年   4236篇
  2006年   3998篇
  2005年   3147篇
  2004年   3084篇
  2003年   2878篇
  2002年   2677篇
  2001年   2470篇
  2000年   2345篇
  1999年   1937篇
  1998年   2032篇
  1997年   1945篇
  1996年   1594篇
  1995年   1633篇
  1994年   1394篇
  1993年   1281篇
  1992年   1242篇
  1991年   1153篇
  1990年   1298篇
  1989年   1104篇
  1988年   1017篇
  1987年   1271篇
  1986年   1043篇
  1985年   1333篇
  1984年   1455篇
  1983年   1409篇
  1982年   1274篇
  1981年   1203篇
  1980年   1064篇
  1979年   988篇
  1978年   1010篇
  1977年   907篇
  1976年   891篇
  1975年   843篇
  1974年   824篇
  1973年   836篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
481.
A new method of initial orbit determination   总被引:2,自引:0,他引:2  
Up to now we have been dealing with the construction of entirely analytical planetary theories such as VSOP82 (Bretagnon, 1982) and TOP82 (Simon, 1983). These theories take into account the whole of the Newtonian perturbations of nine point masses: the Sun, the Earth-Moon barycentre, the planets Mercury, Venus, Mars, Jupiter, Saturn, Uranus and Neptune. They also take into account perturbations due to some minor planets, to the action of the Moon and the relativistic effects. The perturbations of these last three types are in a very simple way under analytical form but they considerably increase the computations when introduced in the numerical integration programs.In the present paper we thus study a solution in which the Newtonian perturbations for the ten point masses are treated through numerical integration, the other perturbations being analytically added.  相似文献   
482.
In this paper we discuss the initial phase of chromospheric evaporation during a solar flare observed with instruments on the Solar Maximum Mission on May 21, 1980 at 20:53 UT. Images of the flaring region taken with the Hard X-Ray Imaging Spectrometer in the energy bands from 3.5 to 8 keV and from 16 to 30 keV show that early in the event both the soft and hard X-ray emissions are localized near the footpoints, while they are weaker from the rest of the flaring loop system. This implies that there is no evidence for heating taking place at the top of the loops, but energy is deposited mainly at their base. The spectral analysis of the soft X-ray emission detected with the Bent Crystal Spectrometer evidences an initial phase of the flare, before the impulsive increase in hard X-ray emission, during which most of the thermal plasma at 107 K was moving toward the observer with a mean velocity of about 80 km s-1. At this time the plasma was highly turbulent. In a second phase, in coincidence with the impulsive rise in hard X-ray emission during the major burst, high-velocity (370 km s-1) upward motions were observed. At this time, soft X-rays were still predominantly emitted near the loop footpoints. The energy deposition in the chromosphere by electrons accelerated in the flare region to energies above 25 keV, at the onset of the high-velocity upflows, was of the order of 4 × 1010 erg s-1 cm-2. These observations provide further support for interpreting the plasma upflows as the mechanism responsible for the formation of the soft X-ray flare, identified with chromospheric evaporation. Early in the flare soft X-rays are mainly from evaporating material close to the footpoints, while the magnetically confined coronal region is at lower density. The site where upflows originate is identified with the base of the loop system. Moreover, we can conclude that evaporation occurred in two regimes: an initial slow evaporation, observed as a motion of most of the thermal plasma, followed by a high-speed evaporation lasting as long as the soft X-ray emission of the flare was increasing, that is as long as plasma accumulation was observed in corona.  相似文献   
483.
Forward modeling of zero-offset data is performed in the frequency-space domain using a one-way extrapolation equation. The use of the frequency domain offers several advantages over conventional time domain methods. The greatest advantage of the frequency domain is that all time derivatives are evaluated exactly by a simple multiplication. Synthetic zero-offset sections are computed with a high degree of accuracy for arbitrary velocity and reflectivity structures. Examples are shown for realistic complicated models and compared with results from physical modeling.  相似文献   
484.
485.
Radiocaesium isotopes, discharged into the North-east Irish Sea from the Sellafield (formerly Windscale) nuclear fuel reprocessing plant in Cumbria, have been employed as flow monitors to update and extend the record of coastal water movement from the Irish Sea to the Clyde Sea area and, further north, to Loch Etive. The temporal trends in radiocaesium levels have been used to determine the extent of water mixing en route and to define mean advection rates. Flow conditions from the Irish Sea have changed considerably since the mid-1970s, the residence time of northern Irish Sea waters being ~12 months during 1978–1980 inclusive. Average transport times of four and six months are estimated for the Sellafield to Clyde and Sellafield to Etive transects respectively. Sellafield 137Cs levels in seawater were diluted by factors of 27 and 50 respectively during current movement to the Clyde and Etive areas. The decrease in salinity-corrected 137Cs concentrations between the Clyde and Etive suggests that dilution by Atlantic water occurs, the latter mainly entering the Firth of Lorne from the west. The majority (~94%) of the radiocaesium supply to Loch Etive enters the Firth of Lorne via the portion of the coastal current circulating west of Islay, only ~6% arriving via the Sound of Jura.  相似文献   
486.
487.
A modelling study of the electron content of the mid-latitude ionosphere and protonosphere has been carried out for solstice conditions using the mathematical model of Bailey (1983). In the model calculations coupled time-dependent O+, H+ continuity and momentum equations and O+, H+ and electron heat balance equations are solved for a magnetic shell extending over both hemispheres. The inclusion of interhemispheric flow of plasma and of heat balance has enabled us to investigate the role of interhemispheric coupling on the electron content and related shape parameters. The computed results are compared with results from slant path observations of the ATS-6 radio beacon made at Lancaster (U.K.) and Boulder, Colorado (U.S.A.).It has been found that the conjugate photoelectron heating has a major effect on the shape of the daily variation of slant slab thickness (τ) and also on the magnitude of the protonospheric content (Np). Some of the main features of τ are closely related to the sunrise and sunset times in the conjugate ionosphere. Also it is found that night-time increases in total electron content (NT) and F2 region peak electron density (Nmax) in winter are natural consequences of ionization loss at low altitudes causing an enhanced downward flow of plasma from the protonosphere which is coupled to the summer hemisphere. One other important consequence of the coupled protonosphere is that the effects on NT of the neutral air wind are not much different in winter from those in summer.  相似文献   
488.
489.
490.
Electrons accelerated during solar flares are revealed by their electromagnetic radiation in different spectral ranges, emitted at different heights in the solar atmosphere. The observational analysis points to a common and continuous injection of particles. Based on this result, a quantitative investigation of the hard X-ray and microwave emissions observed during the 29 June, 1980 flare at 11: 40 UT has been performed. This is the first modelisation that takes into account both the inhomogeneity of the microwave source region and the dynamical evolution of the electron population. First results of our model computations demonstrate that during the most energetic phase of the event both hard X-rays and microwaves are described by electron populations resulting from the same injection function, and that the total numbers of electrons required for both emissions are compatible. Account for the inhomogeneity of the microwave source is shown to be a necessary condition for the interpretation of observed spectra.Proceedings of the Workshop on Radio Continua during Solar Flares, held at Duino (Trieste), Italy, 27–31 May, 1985.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号