首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110349篇
  免费   1806篇
  国内免费   822篇
测绘学   2886篇
大气科学   7837篇
地球物理   21814篇
地质学   38139篇
海洋学   9664篇
天文学   25649篇
综合类   238篇
自然地理   6750篇
  2021年   887篇
  2020年   1002篇
  2019年   1048篇
  2018年   2384篇
  2017年   2180篇
  2016年   2764篇
  2015年   1613篇
  2014年   2738篇
  2013年   5601篇
  2012年   2892篇
  2011年   4013篇
  2010年   3666篇
  2009年   4898篇
  2008年   4215篇
  2007年   4271篇
  2006年   3981篇
  2005年   3271篇
  2004年   3253篇
  2003年   3031篇
  2002年   2965篇
  2001年   2648篇
  2000年   2476篇
  1999年   2224篇
  1998年   2156篇
  1997年   2151篇
  1996年   1824篇
  1995年   1774篇
  1994年   1647篇
  1993年   1493篇
  1992年   1425篇
  1991年   1382篇
  1990年   1511篇
  1989年   1405篇
  1988年   1329篇
  1987年   1539篇
  1986年   1345篇
  1985年   1694篇
  1984年   1885篇
  1983年   1775篇
  1982年   1673篇
  1981年   1648篇
  1980年   1453篇
  1979年   1370篇
  1978年   1347篇
  1977年   1274篇
  1976年   1178篇
  1975年   1086篇
  1974年   1154篇
  1973年   1196篇
  1972年   721篇
排序方式: 共有10000条查询结果,搜索用时 807 毫秒
81.
High resolution echelle spectroscopic observations taken with the FEROS spectrograph at the 2.2 m telescope ESO confirm the binary nature of the flare M3.5V star LU Vel (GJ 375, RE J0958-462) previously reported by Christian and Mathioudakis (2002). Emission of similar intensity from both components is detected in the Balmer, Na i D1&D2, He i D3, Ca ii H&K, and Ca ii IRT lines. We have determined precise radial velocities by cross correlation with radial velocity standard stars, which have allowed us to obtain for the first time the orbital solution of the system. The binary consists of two near-equal M3.5V components with an orbital period shorter than 2 days. We have analyzed the behaviour of the chromospheric activity indicators (variability and possible flares). In addition, we have determined its rotational velocity and kinematics.  相似文献   
82.
83.
Measurements of 18O concentrations in precipitation, soil solution, spring and runoff are used to determine water transit time in the small granitic Strengbach catchment (0·8 km2; 883–1146 m above sea level) located in the Vosges Mountains of northeastern France. Water transit times were calculated by applying the exponential, exponential piston and dispersion models of the FlowPC program to isotopic input (rainfall) and output (spring and stream water) data sets during the period 1989–95. The input function of the model was modified compared with the former version of the model and estimated by a deterministic approach based on a simplified hydrological balance. The fit between observed and calculated output data showed marked improvements compared with results obtained using the initial version of the model. An exponential piston version of the model applied to spring water indicates a 38·5 month mean transit time, which suggests that the volume in the aquifer, expressed in water depth, is 2·4 m. A considerable thickness (>45 m) of fractured bedrock may be involved for such a volume of water to be stored in the aquifer. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
84.
We develop a new method to estimate the redshift of galaxy clusters through resolved images of the Sunyaev–Zel'dovich effect (SZE). Our method is based on morphological observables which can be measured by actual and future SZE experiments. We test the method with a set of high-resolution hydrodynamical simulations of galaxy clusters at different redshifts. Our method combines the observables in a principal component analysis. After calibrating the method with an independent redshift estimation for some of the clusters, we show – using a Bayesian approach – how the method can give an estimate of the redshift of the galaxy clusters. Although the error bars given by the morphological redshift estimation are large, it should be useful for future SZE surveys where thousands of clusters are expected to be detected; a first preselection of the high-redshift candidates could be done using our proposed morphological redshift estimator. Although not considered in this work, our method should also be useful to give an estimate of the redshift of clusters in X-ray and optical surveys.  相似文献   
85.
We present the preliminary results of a study of how small stellar systems merge to form larger ones. As we display the families of galaxies in the μe - Re plane (effective surface brightness versus effective radius) we realize that different morphological types occupy different loci, evidencing the different physical mechanisms operating in each family. As proposed by Capaccioli et al. (1992) this diagram is the logical equivalent of the HR diagram for stars. Here we take some initial steps in understanding of how we can establish the evolutionary tracks, solely due to dynamical processes, in the μe - Re plane, ultimately making a dwarf elliptical to turn into a normal elliptical galaxy. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
86.
87.
88.
Green Lake Landslide is an ancient giant rock slide in gneiss and granodiorite located in the deeply glaciated Fiordland region of New Zealand. The landslide covers an area of 45 km2 and has a volume of about 27 km3. It is believed to be New Zealand's largest landslide, and possibly the largest landslide of its type on Earth. It is one of 39 known very large (106–107 m3) and giant (≥108 m3) postglacial landslides in Fiordland discussed in the paper. Green Lake Landslide resulted in the collapse of a 9 km segment of the southern Hunter Mountains. Slide debris moved up to 2.5 km laterally and 700 m vertically, and formed a landslide dam about 800 m high, impounding a lake about 11 km long that was eventually infilled with sediments. Geomorphic evidence supported by radiocarbon dating indicates that Green Lake Landslide probably occurred 12 000–13 000 years ago, near the end of the last (Otira) glaciation. The landslide is described, and its geomorphic significance, age, failure mechanism, cause, and relevance in the region are discussed, in relation to other large landslides and recent earthquake-induced landslides in Fiordland. The slope failure occurred on a low-angle fault zone undercut by glacial erosion, and was probably triggered by strong shaking (MM IX–X) associated with a large (≥ M 7.5–8) earthquake, on the Alpine Fault c. 80 km to the northwest. Geology was a major factor that controlled the style and size of Green Lake landslide, and in that respect it is significantly different from most other gigantic landslides. Future large earthquakes on the Alpine Fault in Fiordland are likely to trigger more very large and giant landslides across the region, causing ground damage and devastation on a scale that has not occurred during the last 160 years, with potentially disastrous effects on towns, tourist centres, roads, and infrastructure. The probability of such an event occurring within the next 50 years may be as high as 45%.  相似文献   
89.
Leningrad State University. Translated from Astrofizika, Vol. 32, No. 2, pp. 267–275, March–April, 1990.  相似文献   
90.
R. A. Kopp  G. Poletto 《Solar physics》1990,127(2):267-280
Giant arches, first detected by the HXIS instrument aboard SMM, are still a poorly understood component of the flare scenario. Their origin remains uncertain and their behavior, quite different in separate events, has not yet been satisfactorily explained. The purpose of the present paper is to analyze the giant arches imaged on November 6–7, 1980, which, in contrast to that observed on May 21, 1980, were not stationary and had shorter cooling times. In particular, we use a procedure, already applied to the May 21 case, to compute the three-dimensional topology of the magnetic field which forms by reconnection over the active region containing the November arches. This technique allows us to verify that the observed structures are aligned with the computed field lines, lending support to the hypothesis that they originate through a reconnection process which occurs at progressively larger altitudes. Moreover, a calculation of the magnetic energy liberated by reconnection shows that enough energy may be thereby released to account for the observed thermal energy enhancement of the HXIS arches. Finally, the lifetime of the features is shown to be consistent with that predicted by cooling via radiation and field-aligned conduction to the underlying chromosphere.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号