首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   489篇
  免费   25篇
  国内免费   6篇
测绘学   1篇
大气科学   49篇
地球物理   138篇
地质学   170篇
海洋学   23篇
天文学   103篇
综合类   1篇
自然地理   35篇
  2021年   6篇
  2020年   7篇
  2019年   8篇
  2018年   11篇
  2017年   11篇
  2016年   15篇
  2015年   11篇
  2014年   14篇
  2013年   23篇
  2012年   17篇
  2011年   19篇
  2010年   17篇
  2009年   20篇
  2008年   18篇
  2007年   14篇
  2006年   23篇
  2005年   17篇
  2004年   19篇
  2003年   18篇
  2002年   15篇
  2001年   14篇
  2000年   9篇
  1999年   9篇
  1998年   5篇
  1997年   4篇
  1996年   10篇
  1995年   10篇
  1994年   3篇
  1993年   5篇
  1992年   5篇
  1991年   7篇
  1990年   6篇
  1989年   3篇
  1988年   5篇
  1987年   7篇
  1985年   7篇
  1984年   10篇
  1983年   9篇
  1982年   4篇
  1981年   3篇
  1980年   6篇
  1979年   9篇
  1978年   7篇
  1977年   5篇
  1976年   6篇
  1975年   8篇
  1974年   6篇
  1973年   12篇
  1972年   3篇
  1934年   3篇
排序方式: 共有520条查询结果,搜索用时 250 毫秒
51.
52.
There exists a close correspondence between the measured infrared properties of diatoms and the infrared spectrum of interstellar dust as observed in the Trapezium nebula and toward the galactic center source GC-IRS 7. Diatoms and bacteria also exhibit an absorbance peak near 2200 », which is found to agree with the observed ultraviolet absorbance properties of interstellar grains. We review the observational data and consider the known properties of diatoms and bacteria. It is suggested that these characteristics are consistent with the concept of a cosmic microbiological system in which these or similar microorganisms might exist on comets, Europa and in interstellar space.  相似文献   
53.
Isotopic fractionation of Cu in tektites   总被引:1,自引:0,他引:1  
Tektites are terrestrial natural glasses of up to a few centimeters in size that were produced during hypervelocity impacts on the Earth’s surface. It is well established that the chemical and isotopic composition of tektites is generally identical to that of the upper terrestrial continental crust. Tektites typically have very low water content, which has generally been explained by volatilization at high temperature; however, the exact mechanism is still debated. Because volatilization can fractionate isotopes, comparing the isotopic composition of volatile elements in tektites with those of their source rocks may help to understand the physical conditions during tektite formation.Interestingly, volatile chalcophile elements (e.g., Cd and Zn) seem to be the only elements for which isotopic fractionation is known so far in tektites. Here, we extend this study to Cu, another volatile chalcophile element. We have measured the Cu isotopic composition for 20 tektite samples from the four known different strewn fields. All of the tektites (except the Muong Nong-types) are enriched in the heavy isotopes of Cu (1.98 < δ65Cu < 6.99) in comparison to the terrestrial crust (δ65Cu ≈ 0) with no clear distinction between the different groups. The Muong Nong-type tektites and a Libyan Desert Glass sample are not fractionated (δ65Cu ≈ 0) in comparison to the terrestrial crust. To refine the Cu isotopic composition of the terrestrial crust, we also present data for three geological reference materials (δ65Cu ≈ 0).An increase of δ65Cu with decreasing Cu abundance probably reflects that the isotopic fractionation occurred by evaporation during heating. A simple Rayleigh distillation cannot explain the Cu isotopic data and we suggest that the isotopic fractionation is governed by a diffusion-limited regime. Copper is isotopically more fractionated than the more volatile element Zn (δ66/64Zn up to 2.49‰). This difference of behavior between Cu and Zn is predicted in a diffusion-limited regime, where the magnitude of the isotopic fractionation is regulated by the competition between the evaporative flux and the diffusive flux at the diffusion boundary layer. Due to the difference of ionic charge in silicates (Zn2+ vs. Cu+), Cu has a diffusion coefficient that is larger than that of Zn by at least two orders of magnitude. Therefore, the larger isotopic fractionation in Cu than in Zn in tektites is due to the significant difference in their respective chemical diffusivity.  相似文献   
54.
55.
The Atmospheric Infrared Sounder (AIRS) and MODerate-Resolution Imaging Spectroradiometer (MODIS) on board NASA Earth Observing System (EOS) Aqua spacecraft measure the upwelling infrared radiance used for numerous remote-sensing- and climate-related applications. AIRS provides high spectral resolution infrared radiances, while MODIS provides collocated high spatial resolution radiances at 16 broad infrared bands. An optimal algorithm for cloud-clearing has been developed for AIRS cloudy soundings at the University of Wisconsin-Madison, where the spatially and spectrally collocated AIRS and MODIS data has been used to analyze the characteristic of this algorithm. An analysis and characterization of the global AIRS cloud-cleared radiances using the bias and the standard deviation between the cloud-cleared and the nearby clear measurements are studied. Scene inhomogeneity for both land- and water-surface types has been estimated to account for the assessed error. Both monthly and seasonal changes of global AIRS/MODIS cloud-clearing performance also have been analyzed.  相似文献   
56.
57.
This study uses long‐term records of stream chemistry, discharge and air temperature from two neighbouring forested catchments in the southern Appalachians in order to calculate production of dissolved CO2 and dissolved inorganic carbon (DIC). One of the pair of catchments was clear‐felled during the period of the study. The study shows that: (1) areal production rates of both dissolved CO2 and DIC are similar between the two catchments even during and immediately after the period of clear‐felling; (2) flux of total inorganic carbon (dissolved CO2+ DIC) rises dramatically in response to a catchment‐wide acidification event; (3) DIC and dissolved CO2 are dominantly released on the old water portion of the discharge and concentrations peak in the early autumn when flows in the study catchments are at their lowest; (4) total fluvial carbon flux from the clear‐felled catchment is 11·6 t km−2 year−1 and for the control catchment is 11·4 t km−2 year−1. The total inorganic carbon flux represents 69% of the total fluvial carbon flux. The method presented in the study provides a useful way of estimating inorganic carbon flux from a catchment without detailed gas monitoring. The time series of dissolved CO2 at emergence to the stream can also be a proxy for the soil flux of CO2. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
58.
59.
Abstract— Meteoritic data strongly suggest that most chondrules reached maximum temperatures in a range of 1650–2000 K and cooled at relatively slow rates of 100–1000 K/h, implying a persistence of external energy supply. The presence of fine‐grained rims around chondrules in most unequilibrated chondrites also indicates that a significant quantity of micron‐sized dust was present in chondrule formation regions. Here, we assume that the persistent external energy source needed to explain chondrule cooling rates consists primarily of radiation from surrounding heated chondrules, fine dust, and gas after the formation event. Using an approximate one‐dimensional numerical model for the outward diffusion of thermal radiation from such a system, the scale sizes of formation regions required to yield acceptable cooling rates are determined for a range of possible chondrule, dust, and gas parameters. Results show that the inferred scale sizes depend sensitively on the number densities of micron‐sized dust and on their adopted optical properties. In the absence of dust, scale sizes > 1000 km are required for plausible maximum chondrule number densities and heated gas parameters. In the presence of dust with mass densities comparable to those of the chondrules and with absorptivities and emissivities of ~0.01 calculated for Mie spheres with a pure mineral composition, scale sizes as small as ~100 km are possible. If dust absorptivities and emissivities approach unity (as may occur for particles with more realistic shapes and compositions), then scale sizes as small as ×10 km are possible. Considering all uncertainties in model parameters, it is concluded that small scale sizes (10–100 km) for chondrule formation regions are allowed by the experimentally inferred cooling rates.  相似文献   
60.
An intermediate complexity atmospheric general circulation model has been used to investigate the influence of the South Atlantic Ocean (SAO) dipole (SAOD) on summer precipitation over the Guinea Coast of West Africa. Two ensemble integrations in which idealized but realistic SAOD-type sea surface temperature (SST) anomaly is prescribed only in the SAO, and then globally are performed and inter-compared. Consistently, above (below) the average precipitation is simulated over the Guinea Coast during the positive (negative) phase of the SAOD. Comparison of the two set of experiments reveal that in its active years, the SAOD is a dominant mechanism that shapes the spatial character of summer precipitation at the Guinea coast, the global SST variability merely slightly moderate its effects. During the SAOD, cool SST anomaly in the extra-tropical SAO off the Brazil–Uruguay–Argentina coast gives rise to suppressed convection and mass divergence. In turn, the subsidence tends to amplify the sub-tropical arm of anomalous Hadley-type circulation and consequently large scale convection and mass flux convergence in the equatorial Atlantic Ocean/Gulf of Guinea region bordering on the coastal fringes of West Africa. Precipitation is therefore increased at the Guinea Coast.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号