首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   522篇
  免费   25篇
  国内免费   6篇
测绘学   1篇
大气科学   50篇
地球物理   141篇
地质学   185篇
海洋学   23篇
天文学   114篇
综合类   1篇
自然地理   38篇
  2021年   6篇
  2020年   7篇
  2019年   8篇
  2018年   11篇
  2017年   11篇
  2016年   15篇
  2015年   11篇
  2014年   14篇
  2013年   23篇
  2012年   16篇
  2011年   19篇
  2010年   17篇
  2009年   21篇
  2008年   17篇
  2007年   14篇
  2006年   24篇
  2005年   18篇
  2004年   20篇
  2003年   19篇
  2002年   15篇
  2001年   14篇
  2000年   9篇
  1999年   9篇
  1998年   5篇
  1997年   5篇
  1996年   10篇
  1995年   10篇
  1993年   5篇
  1992年   5篇
  1991年   7篇
  1990年   7篇
  1988年   5篇
  1987年   7篇
  1985年   7篇
  1984年   11篇
  1983年   9篇
  1982年   4篇
  1981年   3篇
  1980年   9篇
  1979年   12篇
  1978年   7篇
  1977年   7篇
  1976年   7篇
  1975年   11篇
  1974年   8篇
  1973年   14篇
  1972年   10篇
  1971年   5篇
  1970年   3篇
  1934年   3篇
排序方式: 共有553条查询结果,搜索用时 78 毫秒
471.
Snowmelt is the most significant source of runoff generation and recharge in many of the mountainous watersheds worldwide and this is especially true in the southwestern United States. Yet, the isotopic and geochemical composition of the soil–meltwater endmember remains poorly constrained. Using the isotopic compositions of snow and snowmelt runoff samples taken from the landscape surface as proxies for soil–meltwater endmembers is problematic since they are typically not representative of the actual composition of soil meltwater. Furthermore, the applicability of current methodologies to collect the isotopic composition of meltwater is limited because of the remote and often seasonally inaccessible nature of the terrain where snowpacks develop. Therefore, a robust methodology requiring little maintenance or monitoring is desirable. A lab experiment was conducted to determine the suitability of using a modified passive capillary sampler (M‐PCAPS) design to collect snowmelt infiltration for isotopic analysis. Passive capillary samplers are constructed from fiberglass wicks that can be installed in the soil to sample vadose‐zone waters under a wide range of matric potentials and require little maintenance. Results from this lab experiment indicate that the wicking process associated with M‐PCAPS does not fractionate water but certain precautions are necessary to prevent exchange between the wick and the atmosphere. In this experiment, M‐PCAPS effectively tracked the changing isotopic composition of a soil reservoir undergoing evaporation. Therefore, M‐PCAPS provide a robust methodology to sample the isotopic composition of snowmelt infiltration in remote watersheds and similar applications. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
472.
A method to reduce the spin-up time of ocean models   总被引:2,自引:2,他引:0  
The spin-up timescale in large-scale ocean models, i.e., the time it takes to reach an equilibrium state, is determined by the slow processes in the deep ocean and is usually in the order of a few thousand years. As these equilibrium states are taken as initial states for many calculations, much computer time is spent in the spin-up phase of ocean model computations. In this note, we propose a new approach which can lead to a very large reduction in spin-up time for quite a broad class of existing ocean models. Our approach is based on so-called Jacobian–Free Newton–Krylov methods which combine Newton’s method for solving non-linear systems with Krylov subspace methods for solving large systems of linear equations. As there is no need to construct the Jacobian matrices explicitly the method can in principle be applied to existing explicit time-stepping codes. To illustrate the method we apply it to a 3D planetary geostrophic ocean model with prognostic equations only for temperature and salinity. We compare the new method to the ‘ordinary’ spin-up run for several model resolutions and find a considerable reduction of spin-up time.  相似文献   
473.
474.
Particulate organic matter (POM) transiting through rivers could be lost to overbank storage, stored in‐channel, added to by erosion or autochthonous production, or turned over to release greenhouse gases to the atmosphere (either while in the water column or while stored in the channel). In the UK, a net loss of POM across catchments has been recorded, and the aim here was to investigate the balances of processes acting on the POM. This study considered records of suspended sediment and POM flux in comparison to stream flow, velocity, stream power, and residence time for the River Trent (English Midlands, 8,231 km2). We show that for the lower two thirds (106 km) of the River Trent, 2% is lost to overbank storage; 10% is lost to the atmosphere in the water column; and 31% is turned over while in temporary storage. Permanent in‐channel storage is negligible, and for the lower course of the river, material stored in‐channel will have a residence time of the order of hundreds of days between the last flood hydrograph of one winter and the first winter storm of the next winter (usually in the same calendar year). When considered at the scale of the UK, 1% POM in transit would be lost to overbank sedimentation; 5% turned over in the water column, and 14% turned over while in temporary storage. In the upper third of the study river channel, there is insufficient stream power to transport sediment and so in‐channel storage or in‐channel turnover over to the atmosphere dominate. The in‐channel processes of the River Trent do not conform to that expected for river channels as the headwaters are not eroding or transporting sediment. Therefore, the source of sediment must be lower down the channel network.  相似文献   
475.
A multi-envelope generalised coordinate system for numerical ocean modelling is introduced. In this system, computational levels are curved and adjusted to multiple ‘virtual bottoms’ (aka envelopes) rather than following geopotential levels or the actual bathymetry. This allows defining computational levels which are optimised to best represent different physical processes in different sub-domains of the model. In particular, we show how it can be used to improve the representation of tracer advection in the ocean interior. The new vertical system is compared with a widely used z-partial step scheme. The modelling skill of the models is assessed by comparison with the analytical solutions or results produced by a model with a very high-resolution z-level grid. Three idealised process-oriented numerical experiments are carried out. Experiments show that numerical errors produced by the new scheme are much smaller than those produced by the standard z-partial step scheme at a comparable vertical resolution. In particular, the new scheme shows superiority in simulating the formation of a cold intermediate layer in the ocean interior and in representing dense water cascading down a steep topography.  相似文献   
476.
The Colorado River is an important source of water in the western United States, supplying the needs of more than 38 million people in the United States and Mexico. Groundwater discharge to streams has been shown to be a critical component of streamflow in the Upper Colorado River Basin (UCRB), particularly during low‐flow periods. Understanding impacts on groundwater in the basin from projected climate change will assist water managers in the region in planning for potential changes in the river and groundwater system. A previous study on changes in basin‐wide groundwater recharge in the UCRB under projected climate change found substantial increases in temperature, moderate increases in precipitation, and mostly periods of stable or slight increases in simulated groundwater recharge through 2099. This study quantifies projected spatial and seasonal changes in groundwater recharge within the UCRB from recent historical (1950 to 2015) through future (2016 to 2099) time periods, using a distributed‐parameter groundwater recharge model with downscaled climate data from 97 Coupled Model Intercomparison Project Phase 5 (CMIP5) climate projections. Simulation results indicate that projected increases in basin‐wide recharge of up to 15% are not distributed uniformly within the basin or throughout the year. Northernmost subregions within the UCRB are projected an increase in groundwater recharge, while recharge in other mainly southern subregions will decline. Seasonal changes in recharge also are projected within the UCRB, with decreases of 50% or more in summer months and increases of 50% or more in winter months for all subregions, and increases of 10% or more in spring months for many subregions.  相似文献   
477.
Abstract— This paper explores two processes, sweeping secular resonance (Ward, 1981) and gas drag (Lecar and Franklin, 1997), at work during the dispersal of the solar nebula. we have two aims not previously considered for the two mechanisms: (1) to explain the likely depletion, by a factor of 1000 or so, of the rocky material in the inner belt (2.0 < a < 3.2 AU); (2) to introduce a means for providing—or contributing to—the dispersion in semimajor axis of the various asteroidal taxonomic classes. We suggest that large asteroids with birthplaces separated by an astronomical unit or more can be finally deposited, owing to drag, at the same semimajor axis. For example, we find that bodies with radii up to 100 km can be transferred by gas drag from the outer belt (a > 3.3 AU) well into the inner one, and that an object already in the inner belt as large or even larger than Vesta (r = 250 km)—thought to be the parent body of many meteorites—can be inwardly displaced by as much as an astronomical unit if the nebula dispersal times lie close to 105 years. For such times, a large fraction of the inner belt's primordial mass can be ejected, with most of it passing into the inner solar system.  相似文献   
478.
There exists a close correspondence between the measured infrared properties of diatoms and the infrared spectrum of interstellar dust as observed in the Trapezium nebula and toward the galactic center source GC-IRS 7. Diatoms and bacteria also exhibit an absorbance peak near 2200 Å, which is found to agree with the observed ultraviolet absorbance properties of interstellar grains. We review the observational data and consider the known properties of diatoms and bacteria. It is suggested that these characteristics are consistent with the concept of acosmic microbiological system in which these or similar microorganisms might exist on comets, Europa and in interstellar space.  相似文献   
479.
The often poor quality of ocean bottom seismic data, particularly that observed on horizontal seismometers, is shown to be the result of instruments responding to motions in ways not intended. Instruments designed to obtain the particle motion of the ocean bottom are found to also respond to motions of the water. The shear discontinuity across the ocean floor boundary results in torques that cause package rotation, rather than rectilinear motion, in response to horizontal ground or water motion. The problems are exacerbated by bottom currents and soft sediments. The theory and data presented in this paper suggest that the only reliable way of obtaining high fidelity particle motion data from the ocean floor is to bury the sensors below the bottom in a package with density close to that of the sediment. Long period signals couple well to ocean bottom seismometers, but torques generated by bottom currents can cause noise at both long and short periods. The predicted effects are illustrated using parameters appropriate for the operational OBS developed for the U. S. Office of Naval Research. Examples of data from ocean bottom and buried sensors are also presented.  相似文献   
480.
The only two Nakhlite meteorites, Nakhla and Lafayette, are identical in mineral composition, consisting of augite (Wo39En38Fs23), olivine (Fo32–35), plagioclase (An27), K-feldspar (Or75Ab22An3), titaniferous magnetite with exsolved ilmenite, iddingsite (?), and minor amounts of fluor-chlorapatite, FeS, pyrite, chalcopyrite, and K-rich glass. The texture is suggestive of a cumulative origin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号