首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9309篇
  免费   250篇
  国内免费   332篇
测绘学   265篇
大气科学   764篇
地球物理   1894篇
地质学   3501篇
海洋学   763篇
天文学   2119篇
综合类   40篇
自然地理   545篇
  2023年   51篇
  2022年   58篇
  2021年   72篇
  2020年   84篇
  2019年   97篇
  2018年   267篇
  2017年   218篇
  2016年   315篇
  2015年   186篇
  2014年   302篇
  2013年   484篇
  2012年   291篇
  2011年   478篇
  2010年   360篇
  2009年   572篇
  2008年   436篇
  2007年   420篇
  2006年   413篇
  2005年   389篇
  2004年   341篇
  2003年   321篇
  2002年   304篇
  2001年   260篇
  2000年   249篇
  1999年   208篇
  1998年   194篇
  1997年   184篇
  1996年   174篇
  1995年   157篇
  1994年   135篇
  1993年   109篇
  1992年   95篇
  1991年   101篇
  1990年   93篇
  1989年   90篇
  1988年   71篇
  1987年   109篇
  1986年   75篇
  1985年   79篇
  1984年   81篇
  1983年   93篇
  1982年   89篇
  1981年   82篇
  1980年   65篇
  1979年   60篇
  1977年   56篇
  1976年   62篇
  1975年   43篇
  1973年   55篇
  1972年   41篇
排序方式: 共有9891条查询结果,搜索用时 187 毫秒
991.
Abstract– The oxygen fugacities recorded in the nakhlites Nakhla, Yamato‐000593 (Y‐000593), Lafayette, and NWA998 were studied by applying the Fe,Ti‐oxide oxybarometer. Oxygen fugacities obtained cluster closely around the FMQ (Fayalite–Magnetite–Quartz) buffer (NWA998 = FMQ ? 0.8; Y‐000593 = FMQ ? 0.7; Nakhla = FMQ; Lafayette = FMQ + 0.1). The corresponding equilibration temperatures are 810 °C for Nakhla and Y‐000593, 780 °C for Lafayette and 710 °C for NWA998. All nakhlites record oxygen fugacities significantly higher and with a tighter range than those determined for Martian basalts, i.e., shergottites whose oxygen fugacities vary from FMQ ? 1 to FMQ ? 4. It has been known for some time that nakhlites are different from other Martian meteorites in chemistry, mineralogy, and crystallization age. The present study adds oxygen fugacity to this list of differences. The comparatively large variation in fO2 recorded by shergottites was interpreted by Herd et al. (2002) as reflecting variable degrees of contamination with crustal fluids that would also carry a light rare earth element (REE)‐enriched component. The high oxygen fugacities and the large light REE enrichment of nakhlites fit qualitatively in this model. In detail, however, it is found that the inferred contaminating phase in nakhlites must have been different from those in shergottites. This is supported by unique 182W/184W and 142Nd/144Nd ratios in nakhlites, which are distinct from other Martian meteorites. It is likely that the differences in fO2 between nakhlites and other Martian meteorites were established very early in the history of Mars. Parental trace element rich and trace element poor regions (reservoirs) of Mars mantle ( Brandon et al. 2000 ) must have been kept isolated throughout Martian history. Our results further show significant differences in closure temperature among the different nakhlites. The observed range in equilibration temperatures together with similar fO2 values is attributable to crystallization of nakhlites in the same cumulate pile or lava layer at different burial depths from 0.5 to 30 m below the Martian surface in agreement with Mikouchi et al. (2003) and is further confirmed by similar crystallization ages of about 1.3 Ga ago (e.g., Misawa et al. 2003 ).  相似文献   
992.
Y.-C. Wang  J. Mueller  W.-H. Ip 《Icarus》2010,209(1):46-52
The latest measurements from the two encounters of the MESSENGER spacecraft in year 2008 have discovered several interesting features of the magnetosphere of Mercury. We have performed high-resolution 3D hybrid model calculations to simulate the solar wind interaction with the Hermean magnetosphere during the first two Mercury encounters of the MESSENGER spacecraft in 2008. It is found that the global structure of the Hermean magnetosphere is significantly controlled by the direction of the interplanetary magnetic field. The bow shock size and shape and the magnetotail configuration have very large differences in these two encounters with northward-pointing and southward-pointing interplanetary magnetic field, respectively. Comparisons are also given with the observed magnetic field profiles and the computational results. In general, good agreement can be found including the interesting feature of the relatively thick magnetopause current layer at outbound measurements. Our work shows that 3D hybrid simulation is a promising method to study in detail the Hermean magnetosphere in parallel with the post-MOI observations of the MESSENGER spacecraft and the Bepi-Colombo mission in future.  相似文献   
993.
We study dynamics of quiescent prominences using several data sets taken with the Solar Optical Telescope (SOT) on Hinode. We find a number of processes occurring at different stages of prominence evolution that are common for all of our chosen cases and, having universal character, can be related to fundamental plasma instabilities. We combine the observational evidence and theory to identify these instabilities. Here we discuss three examples: i) prominence cavity formation and its evolution, associated with a screw-pinch instability; ii) development of a regular series of plumes and spikes typical to the Rayleigh?–?Taylor (RT) instability; and iii) the appearance of growing ripples at the prominence/corona interface, often followed by a sudden collimated mass upflow, attributed to the Kelvin?–?Helmholtz (KH) instability. The conditions for transition from a linear (rippling mode) to nonlinear stage of the KH instability, known to have an explosive character, are specified. Given excellent Hinode data, all three aspects of prominence dynamics allow quantitative analysis.  相似文献   
994.
Methane is, together with N2, the main precursor of Titan’s atmospheric chemistry. In our laboratory, we are currently developing a program of laboratory simulations of Titan’s atmosphere, where methane is intended to be dissociated by multiphotonic photolysis at 248 nm. A preliminary study has shown that multiphotonic absorption of methane at 248 nm is efficient and leads to the production of hydrocarbons such as C2H2 (Romanzin et al., 2008). Yet, at this wavelength, little is known about the branching ratios of the hydrocarbon radicals (CH3, CH2 and CH) and their following photochemistry. This paper thus aims at investigating methane photochemistry at 248 nm by comparing the chemical evolution observed after irradiation of CH4 at 248 and at 121.6 nm (Ly-α). It is indeed important to see if the chemistry is driven the same way at both wavelengths in particular because, on Titan, methane photolysis mainly involves Ly-α photons. An approach combining experiments and theoretical analysis by means of a specifically adapted 0-D model has thus been developed and is presented in this paper. The results obtained clearly indicate that the chemistry is different depending on the wavelength. They also suggest that at 248 nm, methane dissociation is in competition with ionisation, which could occur through a three-photon absorption process. As a consequence, 248 nm photolysis appears to be unsuitable to study methane neutral photochemistry alone. The implications of this result on our laboratory simulation program and new experimental developments are discussed. Additional information on methane photochemistry at 121.6 nm are also obtained.  相似文献   
995.
996.
We have used the Grid ENabled Integrated Earth system modelling (GENIE) framework to undertake a systematic search for bi-stability of the ocean thermohaline circulation (THC) for different surface grids and resolutions of 3-D ocean (GOLDSTEIN) under a 3-D dynamical atmosphere model (IGCM). A total of 407,000 years were simulated over a three month period using Grid computing. We find bi-stability of the THC despite significant, quasi-periodic variability in its strength driven by variability in the dynamical atmosphere. The position and width of the hysteresis loop depends on the choice of surface grid (longitude-latitude or equal area), but is less sensitive to changes in ocean resolution. For the same ocean resolution, the region of bi-stability is broader with the IGCM than with a simple energy-moisture balance atmosphere model (EMBM). Feedbacks involving both ocean and atmospheric dynamics are found to promote THC bi-stability. THC switch-off leads to increased import of freshwater at the southern boundary of the Atlantic associated with meridional overturning circulation. This is counteracted by decreased freshwater import associated with gyre and diffusive transports. However, these are localised such that the density gradient between North and South is reduced tending to maintain the THC off state. THC switch-off can also generate net atmospheric freshwater input to the Atlantic that tends to maintain the off state. The ocean feedbacks are present in all resolutions, across most of the bi-stable region, whereas the atmosphere feedback is strongest in the longitude–latitude grid and around the transition where the THC off state is disappearing. Here the net oceanic freshwater import due to the overturning mode weakens, promoting THC switch-on, but the atmosphere counteracts this by increasing net freshwater input. This increases the extent of THC bi-stability in this version of the model. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
997.
A drift and pumpback experiment was conducted in a brackish water sandfill. The sandfill was reclaimed from the sea in the eastern part of Singapore and contains sands with low organic and clay/silt contents. The high salinity in the ground water precludes the use of chloride and bromide as tracers in such an environment, and a field experiment was conducted to assess the viability of using fluorescein as a tracer in brackish water aquifers. Nitrate was used as a second tracer to serve as a check. Initial laboratory studies showed that fluorescence was unaffected over the range of electrical conductivity and pH of the ground water. Results from the field experiment show that fluorescein appears to behave conservatively.  相似文献   
998.
999.
Using 3 years of high-quality temperature measurements (2002–2004) recorded from Maui, HI (20.8°N), we have investigated the characteristics of mesospheric seasonal oscillations at low-latitudes. Measurements of the near-infrared OH (6,2) and O2 (0,1) nightglow emission layers (centered at 87 and 94 km) independently reveal a distinct semi-annual oscillation (SAO) and annual oscillation (AO) with amplitudes of 3.8 and 2.0 K, respectively. An observed asymmetry in the seasonal variation of the nocturnal mean, previously reported by Taylor et al. [2005. Characterization of the semi-annual-oscillation in mesospheric temperatures at low-latitudes. Advances in Space Research 35, doi:10.1016/j.asr.2005.05.111] from this site is shown to be due to a superposed AO of amplitude 50% of the SAO signature. Detailed investigations of the local-time variation of the SAO amplitude and phase combined with TIME-GCM simulations of the seasonal variation of the diurnal tide strongly suggest a large local-time dependence of the amplitude (but not phase) of the observed SAO. These data indicate that the true mean temperature SAO amplitude could be as high as 7 K at this latitude.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号