A coupled ice-ocean model is configured for the pan-Arctic and northern North Atlantic Ocean with a 27.5 km resolution. The model is driven by the daily atmospheric climatology averaged from the 40-year NCEP reanalysis (1958–1997). The ocean model is the Princeton Ocean Model (POM), while the sea ice model is based on a full thermodynamical and dynamical model with plastic-viscous rheology. A sea ice model with multiple categories of thickness is utilized. A systematic model-data comparison was conducted. This model reasonably reproduces seasonal cycles of both the sea ice and the ocean. Climatological sea ice areas derived from historical data are used to validate the ice model performance. The simulated sea ice cover reaches a maximum of 14 × 106 km2 in winter and a minimum of 6.7 × 106 km2 in summer. This is close to the 95-year climatology with a maximum of 13.3 × 106 km2 in winter and a minimum of 7 × 106 km2 in summer. The simulated general circulation in the Arctic Ocean, the GIN (Greenland, Iceland, and Norwegian) seas, and northern North Atlantic Ocean are qualitatively consistent with historical mapping. It is found that the low winter salinity or freshwater in the Canada Basin tends to converge due to the strong anticyclonic atmospheric circulation that drives the anticyclonic ocean surface current, while low summer salinity or freshwater tends to spread inside the Arctic and exports out of the Arctic due to the relaxing wind field. It is also found that the warm, saline Atlantic Water has little seasonal variation, based on both simulation and observations. Seasonal cycles of temperature and salinity at several representative locations reveals regional features that characterize different water mass properties. 相似文献
Fluorine and chlorine play an important role in magmatic differentiation, hydrothermal alteration, and related mineralization processes, but tracing their evolution in magmatic and especially plutonic systems is not an easy task. The F and Cl in melts can be estimated from F and Cl concentrations in minerals, provided that partitioning between minerals and melts are constrained. Based on available partitioning models between mineral/melt, mineral/fluid, and melt/fluid, a set of equations has been derived to determine F and Cl concentrations in melts from the compositions of amphibole, biotite, and apatite. The new calculation procedure has been applied to a plutonic system, the Liujiawa pluton, eastern Dabie orogen (China). Cl and F concentrations in amphiboles, biotites, and apatites from different rock types (gabbronorite, two-pyroxene diorite, clinopyroxene diorite, and hornblende gabbro) have been determined by electron microprobe. Most amphiboles show a negative correlation between log(Cl/OH) and Mg-number and a positive correlation between log(F/OH) and A-site occupation. Biotites from the gabbronorite and two-pyroxene diorite show a slight positive correlation between log(Cl/OH) and Mg, which is however not the case for the clinopyroxene diorite. Apatites from all the samples are rich in F and show negative correlations between Cl and F concentrations. In our case study, we demonstrate that the Cl concentration in melt remains approximately constant at 1,000–2,000?ppm over the major crystallization interval, but decreases strongly at near solidus temperatures as a result of fluid exsolution. The F concentration in melt remains nearly constant at ca. 2,000–3,000?ppm at high temperatures as well as near solidus conditions, indicating that it is not largely affected by fluid exsolution because of its strongly preferred incorporation into melt. Interestingly, the evolution of Cl and F concentrations in melt with magmatic differentiation is similar to that determined in volcanic systems, suggesting that the evolution of Cl and F in melts during crystallization and late magmatic stages at depth (plutonic systems) is similar to that observed in volcanic systems during decompression and degassing. 相似文献
The Medusae Fossae Formation (MFF) has long been thought to be of Amazonian age, but recent studies propose that a significant part of its emplacement occurred in the Hesperian and that many of the Amazonian ages represent modification (erosional and redepositional) ages. On the basis of the new formational age, we assess the hypothesis that explosive eruptions from Apollinaris Patera might have been the source of the Medusae Fossae Formation. In order to assess the likelihood of this hypothesis, we examine stratigraphic relationships between Apollinaris Patera and the MFF and analyze the relief of the MFF using topographic data. We predict the areal distribution of tephra erupted from Apollinaris Patera using a Mars Global Circulation Model (GCM) combined with a semi-analytical explosive eruption model for Mars, and compare this with the distribution of the MFF. We conclude that Apollinaris Patera could have been responsible for the emplacement of the Medusae Fossae Formation. 相似文献
The Wangrah Suite granites (Lachlan Fold Belt, Australia) reflect different stages of differentiation in the magmatic history of an A-type plutonic suite. In this study we use experimentally determined phase equilibria of four natural A-type granitic compositions of the Wangrah Suite to constrain phases and phase compositions involved in fractionation processes. Each composition represents a distinct granite intrusion in the Wangrah Suite. The intrusions are the Danswell Creek (DCG), Wangrah (WG), Eastwood (EG) and Dunskeig Granite (DG), ordered from “most mafic” to “most felsic” by increasing SiO2 and decreasing FeOtotal.
Experimental investigation show that the initial water content in melts from DCG is between 2–3 wt. % H2O. If the DCG is viewed as the parental magma for the Wangrah Suite, then (1) fractionation of magnetite, orthopyroxene and plagioclase ( 20 wt. %) of the DCG composition, leads to compositions similar to that of the EG; (2) further fractionation of plagioclase, quartz, K-feldspar and biotite ( 40 wt. %) from the EG composition, leads to the DG composition. These fractionation steps can occur nearly isobarically and are confirmed by bulk rock Ba, Sr, Rb and Zr concentrations.
In contrast, the generation of the most abundant WG composition cannot be explained by fractional crystallisation from the DCG at isobaric conditions because of the high K2O content of this granite. Magma Mixing could be the process to explain the chemical distinctiveness of the Wangrah Granite from all the other granites of the Wangrah Suite. 相似文献
We tested several planetary-boundary-layer (PBL) schemes available in the Weather Research and Forecasting (WRF) model against measured wind speed and direction, temperature and turbulent kinetic energy (TKE) at three levels (5, 9, 25 m). The Urban Turbulence Project dataset, gathered from the outskirts of Turin, Italy and used for the comparison, provides measurements made by sonic anemometers for more than 1 year. In contrast to other similar studies, which have mainly focused on short-time periods, we considered 2 months of measurements (January and July) representing both the seasonal and the daily variabilities. To understand how the WRF-model PBL schemes perform in an urban environment, often characterized by low wind-speed conditions, we first compared six PBL schemes against observations taken by the highest anemometer located in the inertial sub-layer. The availability of the TKE measurements allows us to directly evaluate the performances of the model; results of the model evaluation are presented in terms of quantile versus quantile plots and statistical indices. Secondly, we considered WRF-model PBL schemes that can be coupled to the urban-surface exchange parametrizations and compared the simulation results with measurements from the two lower anemometers located inside the canopy layer. We find that the PBL schemes accounting for TKE are more accurate and the model representation of the roughness sub-layer improves when the urban model is coupled to each PBL scheme. 相似文献
The Bonarelli Level (BL) from the upper Cenomanian portion of the reference Bottaccione section (central Italy) is characterized by the presence of black shales containing high TOC concentrations (up to 17%) and amounts of CaCO3 near to zero. In the absence of carbonate and, consequently, of relative carbon- and oxygen-isotopic data, the elemental geochemistry revealed to be a very useful tool to obtain information about the palaeoclimatic and palaeoceanographic evolution of the Tethys Ocean during the OAE2. Based on several geochemical proxies (Rb, V, Ni, Cr, Si, Ba), the BL is interpreted as a high-productivity event driven by increasingly warm and humid climatic conditions promoting an accelerated hydrological cycle. The enrichment factors of peculiar trace metals (Zn, Cd, Pb, Sb, Mo, U) provide further insight about the H2S activity at the seafloor during the organic-rich sediment deposition and permitted us to evaluate the use of Ba as palaeoproductivity tracer in conditions of high rate of sulphate reduction.By comparing geochemical records from the reference Bottaccione section (central Italy) with those previously obtained for the coeval Calabianca section (northwestern Sicily), different degrees of oceanic anoxia were delineated and ascribed to different abundance and type (degradable or refractory) of organic matter, which are limiting factors in the bacterial sulphate reduction reactions and in subsequent euxinic conditions at seafloor in the Tethys realm. Based on a ciclostratigraphic approach, consistent fluctuations at 100 ky scale in the chemostratigraphic signals from the two sections are inferred to be expression of a strong orbital-climatic forcing driving changes in the oceanic environment during the BL deposition. 相似文献
This session was the first of the Symposium, for an obviousreason: the study of behavioural patterns in open aquatic ecosystemsdepends strongly on the availability of sophisticated technologyallowing observation and recording in an opaque and even hostilemedium. Dr Penny Allen's opening lecture on "Bringing Oceansinto Focus: The Challenges of Filming Fish Behaviour for WildlifeDocumentaries" was followed by 10 oral communications and 17posters which dealt with technical improvement (9 presentations),examples of application (11 presentations), and experimentaldesign in the open 相似文献
We present the study of dust environment of dynamically new Comet C/2003 WT42 (LINEAR) based on spectroscopic and photometric observations. The comet was observed before and after the perihelion passage at heliocentric distances from 5.2 to 9.5 AU. Although the comet moved beyond the zone where water ice sublimation could be significant, its bright coma and extended dust tail evidenced the high level of physical activity. Afρ values exceeded 3000 cm likely reaching its maximum before the perihelion passage. At the same time, the spectrum of the comet did not reveal molecular emission features above the reflected continuum. Reddening of the continuum derived from the cometary spectrum is nonlinear along the dispersion with the steeper slop in the blue region. The pair of the blue and red continuum images was analyzed to estimate a color of the comet. The mean normalized reflectivity gradient derived from the innermost part of the cometary coma equals to 8% per 1000 Å that is typical for Oort cloud objects. However, the color map shows that the reddening of the cometary dust varies over the coma increasing to 15% per 1000 Å along the tail axis. The photometric images were fitted with a Monte Carlo model to construct the theoretical brightness distribution of the cometary coma and tail and to investigate the development of the cometary activity along the orbit. As the dust particles of distant comets are expected to be icy, we propose here the model, which describes the tail formation taking into account sublimation of grains along their orbits. The chemical composition and structure of these particles are assumed to correspond with Greenberg’s interstellar dust model of comet dust. All images were fitted with the close values of the model parameters. According to the results of the modeling, the physical activity of the comet is mainly determined by two active areas with outflows into the wide cones. The obliquity of the rotation axis of the nucleus equals to 20° relative to the comet’s orbital plane. The grains occupying the coma and tail are rather large amounting to 1 mm in size, with the exponential size distribution of a−4.5. The outflow velocities of the dust particles vary from a few centimeters to tens of meters per second depending on their sizes. Our observations and the model findings evidence that the activity of the nucleus decreased sharply to a low-level phase at the end of April–beginning of May 2007. About 190 days later, in the first half of November 2007 the nucleus stopped any activity, however, the remnant tail did not disappear for more than 1.5 years at least. 相似文献
The mostly carbon dioxide (CO2) atmosphere of Mars condenses and sublimes in the polar regions, giving rise to the familiar waxing and waning of its polar caps. The signature of this seasonal CO2 cycle has been detected in surface pressure measurements from the Viking and Pathfinder landers. The amount of CO2 that condenses during fall and winter is controlled by the net polar energy loss, which is dominated by emitted infrared radiation from the cap itself. However, models of the CO2 cycle match the surface pressure data only if the emitted radiation is artificially suppressed suggesting that they are missing a heat source. Here we show that the missing heat source is the conducted energy coming from soil that contains water ice very close to the surface. The presence of ice significantly increases the thermal conductivity of the ground such that more of the solar energy absorbed at the surface during summer is conducted downward into the ground where it is stored and released back to the surface during fall and winter thereby retarding the CO2 condensation rate. The reduction in the condensation rate is very sensitive to the depth of the soil/ice interface, which our models suggest is about 8 cm in the Northern Hemisphere and 11 cm in the Southern Hemisphere. This is consistent with the detection of significant amounts of polar ground ice by the Mars Odyssey Gamma Ray Spectrometer and provides an independent means for assessing how close to the surface the ice must be. Our results also provide an accurate determination of the global annual mean size of the atmosphere and cap CO2 reservoirs, which are, respectively, 6.1 and 0.9 hPa. They also indicate that general circulation models will need to account for the effect of ground ice in their simulations of the seasonal CO2 cycle. 相似文献