首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   189篇
  免费   8篇
  国内免费   2篇
大气科学   19篇
地球物理   30篇
地质学   64篇
海洋学   18篇
天文学   58篇
综合类   2篇
自然地理   8篇
  2024年   1篇
  2022年   1篇
  2021年   3篇
  2020年   3篇
  2019年   3篇
  2018年   5篇
  2017年   9篇
  2016年   8篇
  2015年   10篇
  2014年   9篇
  2013年   9篇
  2012年   8篇
  2011年   16篇
  2010年   7篇
  2009年   12篇
  2008年   13篇
  2007年   6篇
  2006年   8篇
  2005年   10篇
  2004年   8篇
  2003年   8篇
  2002年   3篇
  2001年   3篇
  2000年   3篇
  1999年   3篇
  1998年   5篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1990年   1篇
  1987年   2篇
  1983年   4篇
  1982年   3篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
  1976年   2篇
  1971年   1篇
排序方式: 共有199条查询结果,搜索用时 31 毫秒
191.
Cloud Resolving Models (CRMs) which are used increasingly to make operational forecasts, employ Bulk Microphysics Schemes (BMSs) to describe cloud microphysical processes. In this study two BMSs are employed in a new Nonhydrostatic σ-coordinate Model to perform two hour simulations of convection initiated by a warm bubble, using a horizontal grid resolution of 500 m. Different configurations of the two BMSs are applied, to test the effects of the presence of graupel with one scheme (2-configurations) and of changing the cloud droplet sizes in the second scheme (4-configurations), on the simulation of idealised thunderstorms. Maximum updrafts in all the simulations are similar over the first 40 minutes, but start to differ beyond this point. The first scheme simulates the development of a second convective cell that is triggered by the cold pool that develops from the outflow of the first storm. The cold pool is more intense in the simulation with graupel because of melting of graupel particles, which results in relatively large raindrops, decreases the temperature through latent heat absorption, causing stronger downdrafts, which all contribute to the formation of a more intense cold pool. The second scheme simulates the development of a second cell in two of its configurations, while two other configurations do not simulate the redevelopment. Two configurations that simulate the secondary redevelopment produce a slightly stronger cold pool just before redevelopment. Our results show that small differences in the microphysics formulations result in simulations of storm dynamics that diverge, possibly due nonlinearities in the model.  相似文献   
192.
Abstract

A meridional circulation of sunspots has been measured through the digital analysis of the Meudon spectroheliograms from 1978 to 1983. Old and young sunspots follow a zonal meridional circulation, in several bands of latitude, in which two adjacent bands have opposite motions. This meridional circulation pattern is time-dependent. Using the H α filaments as magnetic field tracers, a large-scale magnetic pattern has been found that was also obtained independently by direct measurement of the magnetic field (Hoeksema, 1988).

The coincidence of a large-scale magnetic pattern with a zonal meridional circulation suggests the existence of azimuthal rolls below the surface, and these azimuthal rolls can explain a number of properties of the solar cycle. New rolls occur with increasing proximity to the Equator, thereby indicating the direction of propagation of the dynamo wave. The occurrence of rolls is very favorable to the emergence of the magnetic regions. The rolls also influence the magnetic complexity of the active regions. They modulate the surface rotation through the Coriolis force, which accelerates or decelerates the fluid particles. They therefore offer a plausible explanation of the torsional oscillation pattern.

There are a number of problems raised by such an unexpected circulation pattern: for example, the coexistence of axisymmeric rolls with hypothetical giant cells, the location of the dynamo source below or within the convective zone, and the coupling of the radiative interior and the convective layers. To resolve these important issues, continuous observational studies are needed of the manifestation of solar activity, as well as of radius and luminosity variations. So, we have aimed our paper at an audience of theoreticians in the hope that they take up the challenges we describe.  相似文献   
193.
The influence of ablation cell geometry (Frames single‐ and HelEx two‐volume cells) and laser wavelength (198 and 266 nm) on aerosols produced by femtosecond laser ablation (fs‐LA) were evaluated. Morphologies, iron mass distribution (IMD) and 56Fe/54Fe ratios of particles generated from magnetite, pyrite, haematite and siderite were studied. The following two morphologies were identified: spherules (10–200 nm) and agglomerates (5–10 nm). Similarity in IMD and ablation rate at 198 and 266 nm indicates similar ablation mechanisms. 56Fe/54Fe ratios increased with aerodynamic particle size as a result of kinetic fractionation during laser plasma plume expansion, cooling and aerosol condensation. The HelEx cell produces smaller particles with a larger range of 56Fe/54Fe ratios (1.85‰) than particles from the Frames cell (1.16‰), but the bulk aerosol matches the bulk substrate for both cells, demonstrating stoichiometric fs‐LA sampling. IMD differences are the result of faster wash out of the HelEx cell allowing less time for agglomeration of small, low‐δ 56Fe particles with larger, high‐δ 56Fe particles in the cell. Even with a shorter ablation time, half the total Fe ion intensity, and half the ablation volume, the HelEx cell produced Fe isotope determinations for magnetite that were as precise as the Frames cell, even when the latter included an aerosol‐homogenising mixing chamber. The HelEx cell delivered a more constant stream of small particles to the ICP, producing a more stable Fe ion signal (0.7% vs. 1.5% RSE for 56Fe in a forty‐cycle single analysis), constant instrumental mass bias and thus a more precise measurement.  相似文献   
194.
G Tobie  F Forget  F Lott 《Icarus》2003,164(1):33-49
In 1998, the Mars Orbiter Laser Altimeter revealed the presence of isolated or quasi-periodic thick clouds during the martian polar night. They are believed to be composed of CO2 ice particles and to be tilted against the wind direction, a feature characteristic of vertically propagating orographic gravity waves. To support that interpretation, we present here numerical simulations with a two-dimensional anelastic model of stratified shear flow that includes simple CO2 ice microphysics. In some of the simulations presented, the orography is an idealized trough, with dimensions characteristic of the many troughs that shape the Mars polar cap. In others, it is near the real orography. In the polar night conditions, our model shows that gravity waves over the north polar cap are strong enough to induce adiabatic cooling below the CO2 frost point. From this cooling, airborne heterogeneous nucleation of CO2 ice particles occurs from the ground up to the altitude of the polar thermal inversion. Although the model predicts that clouds can be present above 15 km, only low altitude clouds can backscatter the Laser beams of MOLA at a detectable level. Accordingly, the shape of the Laser echoes is related to the shape of the clouds at low level, but do not necessarily coincide with the top of the clouds. The model helps to interpret the cloud patterns observed by MOLA. Above an isolated orographic trough, an isolated extended sloping cloud tilted against the wind is obtained. The model shows that the observed quasi-periodic clouds are due to the succession of small-scale topographic features, rather than to the presence of resonant trapped lee waves. Indeed, the CO2 condensation greatly damps the buoyancy force, essential for the maintenance of gravity waves far from their sources. Simulations with realistic topography profiles show the cloud response is sensitive to the wind direction. When the wind is directed upslope of the polar cap, on the one hand, a large scale cloud, modulated by small-scale waves, forms just above the ground. On the other hand, when the wind is directed downslope, air is globally warmed, and periodic ice clouds induced by small-scale orography form at altitudes higher than 3-5 km above the ground. In both cases, a good agreement between the simulated echoes and the observed one is obtained. According to our model, we conclude that the observed clouds are quasi-stationary clouds made of moving ice particles that successively grow and sublimate by crossing cold and warm phases of orographic gravity waves generated by the successive polar troughs. We also find that the rate of ice precipitation is relatively weak, except when there is a large scale air dynamical cooling.  相似文献   
195.
This note summarizes the results from the Mars recent climate change workshop at NASA/Ames Research Center, May 15–17, 2012.  相似文献   
196.
197.
A fretted valley system on Mars located at the northern mid-latitude dichotomy boundary contains lineated valley fill (LVF) with extensive flow-like features interpreted to be glacial in origin. We have modeled this deposit using glacial flow models linked to atmospheric general circulation models (GCM) for conditions consistent with the deposition of snow and ice in amounts sufficient to explain the interpreted glaciation. In the first glacial flow model simulation, sources were modeled in the alcoves only and were found to be consistent with the alpine valley glaciation interpretation for various environments of flow in the system. These results supported the interpretation of the observed LVF deposits as resulting from initial ice accumulation in the alcoves, accompanied by debris cover that led to advancing alpine glacial landsystems to the extent observed today, with preservation of their flow texture and the underlying ice during downwasting in the waning stages of glaciation. In the second glacial flow model simulation, the regional accumulation patterns predicted by a GCM linked to simulation of a glacial period were used. This glacial flow model simulation produced a much wider region of thick ice accumulation, and significant glaciation on the plateaus and in the regional plains surrounding the dichotomy boundary. Deglaciation produced decreasing ice thicknesses, with flow centered on the fretted valleys. As plateaus lost ice, scarps and cliffs of the valley and dichotomy boundary walls were exposed, providing considerable potential for the production of a rock debris cover that could preserve the underlying ice and the surface flow patterns seen today. In this model, the lineated valley fill and lobate debris aprons were the product of final retreat and downwasting of a much larger, regional glacial landsystem, rather than representing the maximum extent of an alpine valley glacial landsystem. These results favor the interpretation that periods of mid-latitude glaciation were characterized by extensive plateau and plains ice cover, rather than being restricted to alcoves and adjacent valleys, and that the observed lineated valley fill and lobate debris aprons represent debris-covered residual remnants of a once more extensive glaciation.  相似文献   
198.
Currently, and throughout much of the Amazonian, the mean annual surface temperatures of Mars are so cold that basal melting does not occur in ice sheets and glaciers and they are cold-based. The documented evidence for extensive and well-developed eskers (sediment-filled former sub-glacial meltwater channels) in the south circumpolar Dorsa Argentea Formation is an indication that basal melting and wet-based glaciation occurred at the South Pole near the Noachian–Hesperian boundary. We employ glacial accumulation and ice-flow models to distinguish between basal melting from bottom-up heat sources (elevated geothermal fluxes) and top-down induced basal melting (elevated atmospheric temperatures warming the ice). We show that under mean annual south polar atmospheric temperatures (?100 °C) simulated in typical Amazonian climate experiments and typical Noachian–Hesperian geothermal heat fluxes (45–65 mW/m2), south polar ice accumulations remain cold-based. In order to produce significant basal melting with these typical geothermal heat fluxes, the mean annual south polar atmospheric temperatures must be raised from today’s temperature at the surface (?100 °C) to the range of ?50 to ?75 °C. This mean annual polar surface atmospheric temperature range implies lower latitude mean annual temperatures that are likely to be below the melting point of water, and thus does not favor a “warm and wet” early Mars. Seasonal temperatures at lower latitudes, however, could range above the melting point of water, perhaps explaining the concurrent development of valley networks and open basin lakes in these areas. This treatment provides an independent estimate of the polar (and non-polar) surface temperatures near the Noachian–Hesperian boundary of Mars history and implies a cold and relatively dry Mars climate, similar to the Antarctic Dry Valleys, where seasonal melting forms transient streams and permanent ice-covered lakes in an otherwise hyperarid, hypothermal climate.  相似文献   
199.
The association between bi-decadal rainfall variability over southern Africa and the rainfall contributed by tropical cyclonic systems from the Southwest Indian Ocean (SWIO) provides a potential means towards understanding decadal-scale variability over parts of the region. A multi-decadal period is considered, focusing on the anomalous tropospheric patterns that induced a particularly wet 8-year long sub-period over the Limpopo River Basin. The wet sub-period was also characterized by a larger contribution to rainfall by tropical cyclones and depressions. The findings suggest that a broadening of the Hadley circulation underpinned by an anomalous anticyclonic pattern to the east of southern Africa altered tropospheric steering flow, relative vorticity and moisture contents spatially during the sub-period of 8 years. These circulation modulations induced enhanced potential for tropical systems from the SWIO to cause precipitation over the Limpopo River Basin. The same patterns are also conducive to increasing rainfall over the larger subcontinent, therefore explaining the positive association in the bi-decadal rainfall cycle and rainfall contributed by tropical cyclonic systems from the SWIO. An overview of regional circulation anomlies during alternating near-decadal wet and dry epochs is given. The regional circulation anomalies are also explained in hemispheric context, specifically in relation to the Southern Annular Mode, towards understanding variation over other parts of the Southern Hemisphere at this time scale.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号