首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1149篇
  免费   80篇
  国内免费   6篇
测绘学   30篇
大气科学   106篇
地球物理   337篇
地质学   423篇
海洋学   130篇
天文学   109篇
综合类   9篇
自然地理   91篇
  2024年   1篇
  2023年   4篇
  2022年   8篇
  2021年   21篇
  2020年   23篇
  2019年   22篇
  2018年   55篇
  2017年   44篇
  2016年   104篇
  2015年   68篇
  2014年   67篇
  2013年   69篇
  2012年   67篇
  2011年   93篇
  2010年   64篇
  2009年   84篇
  2008年   61篇
  2007年   49篇
  2006年   60篇
  2005年   31篇
  2004年   29篇
  2003年   24篇
  2002年   28篇
  2001年   13篇
  2000年   16篇
  1999年   21篇
  1998年   21篇
  1997年   15篇
  1996年   10篇
  1995年   10篇
  1994年   8篇
  1993年   4篇
  1992年   2篇
  1991年   4篇
  1990年   7篇
  1989年   5篇
  1988年   4篇
  1987年   1篇
  1986年   3篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
  1973年   2篇
  1970年   1篇
排序方式: 共有1235条查询结果,搜索用时 62 毫秒
51.
The magmatic arc of the Fuegian Andes is composed mostly of Upper Mesozoic to Cenozoic calc-alkaline plutons and subordinated lavas. To the rear arc, however, isolated mid-Cretaceous monzonitic plutons and small calc-alkaline dykes and sills crop out. This calc-alkaline unit (the Ushuaia Peninsula Andesites, UPA) includes hornblende-rich, porphyritic quartz meladiorites, granodiorites, andesites, dacites and lamprophyres. Radiometric dating and cross-cutting relationships indicate that UPA is younger than the monzonitic suite. The geochemistry of UPA is medium to high K, with high LILE (Ba 500–2000 ppm, Sr 800–1400 ppm), HFSE (Th 7–23 ppm, Nb 7–13 ppm, Ta 0.5–1.1 ppm) and LREE (La 16–51 ppm) contents, along with relatively low HREE (Yb 1.7–1.3 ppm) and Y (9–19 ppm). The similar mineralogy and geochemistry of all UPA rocks suggest they evolved from a common parental magma, by low pressure crystal fractionation, without significant crustal assimilation. A pure Rayleigh fractionation model indicates that 60–65% of crystal fractionation of 60% hornblende + 34% plagioclase + 4% clinopyroxene + 1% Fe-Ti oxide, apatite and sphene (a paragenesis similar of UPA mafic rocks) can explain evolution from lamprophyres to dacites. The UPA has higher LILE, HFSE and LREE, and lower HREE and Y than the calc-alkaline plutons and lavas of the volcanic front. The HREE and Y are lower than in the potassic plutons as well. High concentrations of Th, Nb, Ta, Zr, Hf, LREE and Ce/Pb, and low U/Th, Ba/Th ratios in UPA, even in the least differentiated samples, suggest contributions from subducted sediments to the mantle source. On the other hand, relatively low HREE and Y, high LREE/HREE (La/Yb 11–38) ratios and Nb-Ta contents can be interpreted as mantle metasomatism by partial melts of either subducted garnetiferous oceanic sediment or basalt as well. Additionally, high LILE content in UPA, similar to the potassic plutons, suggests also a mantle wedge previously metasomatized by potassic parental magmas in their route to crustal levels. Therefore, UPA represents a unique suite in the Fuegian arc generated in a multiple hybridized source. UPA generation is related to a transition from normal to flat subduction which additionally caused the widening and landward migration of the magmatic arc, as well as crustal deformation. Rear-arc magmatism endured ca. 22 m.y.; afterwards, calc-alkaline magmatism remained at the volcanic front.  相似文献   
52.
The Upper Cretaceous succession of the Leonese Area (NW Spain) comprises mixed clastic and carbonate sediments. This succession is divided into two lithostratigraphic units, the Voznuevo Member and the Boñar Formation, which represent fluvial, shoreface, intertidal, subtidal and open‐shelf sedimentary environments. Regional seismic interpretation and sequence stratigraphic analysis have allowed the study of lateral and vertical changes in the sedimentary record and the definition of third‐order levels of stratigraphic cyclicity. On the basis of these data, the succession can be divided into two second‐order depositional sequences (DS‐1 and DS‐2), incorporating three system tracts in a lowstand to transgressive to highstand system tract succession (LST–TST–HST). These sequences are composed of fluvial systems at the base with palaeocurrents that flowed westward and south‐westward. The upper part of DS‐1 (Late Albian–Middle Turonian) shows evidence of intertidal to subtidal and offshore deposits. DS‐2 (Late Turonian–Campanian) comprises intertidal to subtidal, tidal flat, shallow marine and lacustrine deposits and interbedded fluvial deposits. Two regressive–transgressive cycles occurred in the area related to eustatic controls. The evolution of the basin can be explained by base‐level changes and associated shifts in depositional trends of successive retrogradational episodes. By using isobath and isopach maps, the main palaeogeographic features of DS‐1 and DS‐2 were constrained, namely coastline positions, the existence and orientation of corridors through which fluvial networks were channelled and the location of the main depocentres of the basin. Sedimentation on the Upper Cretaceous marine platform was mainly controlled by (i) oscillations of sea level and (ii) the orientation of Mesozoic faults, which induced sedimentation along depocentres. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
53.
Detrital zircons from Holocene beach sand and igneous zircons from the Cretaceous syenite forming Cape Sines (Western Iberian margin) were dated using laser ablation – inductively coupled plasma – mass spectrometry. The U–Pb ages obtained were used for comparison with previous radiometric data from Carboniferous greywacke, Pliocene–Pleistocene sand and Cretaceous syenite forming the sea cliff at Cape Sines and the contiguous coast. New U–Pb dating of igneous morphologically simple and complex zircons from the syenite of the Sines pluton suggests that the history of zircon crystallization was more extensive (ca 87 to 74 Ma), in contrast to the findings of previous geochronology studies (ca 76 to 74 Ma). The U–Pb ages obtained in Holocene sand revealed a wide interval, ranging from the Cretaceous to the Archean, with predominance of Cretaceous (37%), Palaeozoic (35%) and Neoproterozoic (19%) detrital‐zircon ages. The paucity of round to sub‐rounded grains seems to indicate a short transportation history for most of the Cretaceous zircons (ca 95 to 73 Ma) which are more abundant in the beach sand that was sampled south of Cape Sines. Comparative analysis using the Kolmogorov–Smirnov statistical method, analysing sub‐populations separately, suggests that the zircon populations of the Carboniferous and Cretaceous rocks forming the sea cliff were reproduced faithfully in Quaternary sand, indicating sediment recycling. The similarity of the pre‐Cretaceous ages (>ca 280 Ma) of detrital zircons found in Holocene sand, as compared with Carboniferous greywacke and Pliocene–Pleistocene sand, provides support for the hypothesis that detritus was reworked into the beach from older sedimentary rocks exposed along the sea cliff. The largest percentage of Cretaceous zircons (<ca 95 Ma) found in Holocene sand, as compared with Pliocene–Pleistocene sand (secondary recycled source), suggests that the Sines pluton was the one of the primary sources that became progressively more exposed to erosion during Quaternary uplift. This work highlights the application of the Kolmogorov–Smirnov method in comparison of zircon age populations used to identify provenance and sediment recycling in modern and ancient detrital sedimentary sequences.  相似文献   
54.
55.
The conversion of subalpine forests into grasslands for pastoral use is a well-knownphenomenon, although for most mountain areas the timing of deforestation has not been determined. The presence of charcoal fragments in soil profiles affected by shallow landsliding enabled us to date the occurrence of fires and the periods of conversion ofsubalpine forest into grasslands in the Urbión Mountains, Iberian Range, Spain. We found that the treeline in the highest parts of the northwestern massifs of the Iberian Range(the Urbión, Demanda, Neila, and Cebollera massifs) is currently between 1500 and 1600 m a.s.l., probably because of pastoral use of the subalpine belt, whereas in the past it would have reached almost the highest divides(at approximately 2100–2200 m a.s.l.). The radiocarbon dates obtained indicate that the transformation of the subalpine belt occurred during the Late Neolithic, Chalcolithic, Bronze Age, Iron Age, and Middle Ages. Forest clearing was probably moderate during fires prior to the Middle Ages, as the small size of the sheep herds and the local character of the markets only required small clearings, and therefore more limited fires. Thus, it is likely that the forest recovered burnt areas in a few decades; this suggests the management of the forest and grasslands following a slash-andburn system. During the Middle and Modern Ages deforestation and grassland expansion affected most of the subalpine belt and coincided with the increasing prevalence of transhumance, as occurred in other mountains in the Iberian Peninsula(particularly the Pyrenees). Although the occurrence of shallow landslides following deforestation between the Neolithic and the Roman Period cannot be ruled out, the most extensive shallow landsliding processes would have occurred from the Middle Ages until recent times.  相似文献   
56.
57.
58.
59.
60.
The calibration errors on experimental slant total electron content (TEC) determined with global positioning system (GPS) observations is revisited. Instead of the analysis of the calibration errors on the carrier phase leveled to code ionospheric observable, we focus on the accuracy analysis of the undifferenced ambiguity-fixed carrier phase ionospheric observable determined from a global distribution of permanent receivers. The results achieved are: (1) using data from an entire month within the last solar cycle maximum, the undifferenced ambiguity-fixed carrier phase ionospheric observable is found to be over one order of magnitude more accurate than the carrier phase leveled to code ionospheric observable and the raw code ionospheric observable. The observation error of the undifferenced ambiguity-fixed carrier phase ionospheric observable ranges from 0.05 to 0.11 total electron content unit (TECU) while that of the carrier phase leveled to code and the raw code ionospheric observable is from 0.65 to 1.65 and 3.14 to 7.48 TECU, respectively. (2) The time-varying receiver differential code bias (DCB), which presents clear day boundary discontinuity and intra-day variability pattern, contributes the most part of the observation error. This contribution is assessed by the short-term stability of the between-receiver DCB, which ranges from 0.06 to 0.17 TECU in a single day. (3) The remaining part of the observation errors presents a sidereal time cycle pattern, indicating the effects of the multipath. Further, the magnitude of the remaining part implies that the code multipath effects are much reduced. (4) The intra-day variation of the between-receiver DCB of the collocated stations suggests that estimating DCBs as a daily constant can have a mis-modeling error of at least several tenths of 1 TECU.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号