首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   257649篇
  免费   4365篇
  国内免费   3329篇
测绘学   6851篇
大气科学   19036篇
地球物理   53741篇
地质学   89196篇
海洋学   21434篇
天文学   56113篇
综合类   1018篇
自然地理   17954篇
  2021年   2225篇
  2020年   2583篇
  2019年   2844篇
  2018年   3461篇
  2017年   3223篇
  2016年   5662篇
  2015年   4188篇
  2014年   6884篇
  2013年   14180篇
  2012年   6436篇
  2011年   7775篇
  2010年   6900篇
  2009年   9468篇
  2008年   8298篇
  2007年   7813篇
  2006年   9631篇
  2005年   7681篇
  2004年   7577篇
  2003年   7096篇
  2002年   6662篇
  2001年   5956篇
  2000年   5928篇
  1999年   5195篇
  1998年   5215篇
  1997年   5020篇
  1996年   4657篇
  1995年   4414篇
  1994年   4093篇
  1993年   3828篇
  1992年   3620篇
  1991年   3586篇
  1990年   3751篇
  1989年   3502篇
  1988年   3303篇
  1987年   3845篇
  1986年   3404篇
  1985年   4216篇
  1984年   4728篇
  1983年   4398篇
  1982年   4305篇
  1981年   3913篇
  1980年   3634篇
  1979年   3507篇
  1978年   3479篇
  1977年   3275篇
  1976年   3041篇
  1975年   2960篇
  1974年   2915篇
  1973年   3073篇
  1972年   2025篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
931.
This is a quantitative investigation of the electron beam effect on the hydrogen line profiles and continuum intensity distribution during the impulsive phase of flares. The flaring atmosphere is suggested to be a hydrogenic one and its physical condition corresponds to the gas dynamics problem solution. The radiative transfer, steady-state and particle conservation equations are solved for the three-level hydrogen model atoms with continua. Return-current losses were neglected. Hydrogen line profiles are found to be slightly sensitive to nonthermal impacts with beam electrons in the cores and more sensitive in the wings. With the initial energy flux,F 0, rising and energy spectral index, , decreasing, the wing intensities begin to increase, and the H lines are shown to have rather extended wings as is often observed. The hydrogen continua are shown to be strongly affected by nonthermal impacts. The bigger the value ofF 0 and the smaller the value of , the greater absolute intensities of the hydrogen continua heads. This effect is more noticeable for the Balmer and Paschen continua. The head intensity slopes of them can be used for determination of these electron beam parameters on depths of the hydrogen emission origin and their following comparison with the same parameters for the coronal heights from the X-ray observations.  相似文献   
932.
We have modeled stellar coronal loops in static conditions for a wide range of loop length, plasma pressure at the base of the loop and stellar surface gravity, so as to describe physical conditions that can occur in coronae of stars ranging from low mass dwarfs to giants as well as on a significant fraction of the Main-Sequence stars.Three alternative formulations of heat conduction have been used in the energy balance equation, depending on the ratio 0/L Tbetween electron mean free path and temperature scale height: Spitzer's formulation for 0/L Tless than 2 × 10–3, the Luciani, Mora, and Virmont non-local formulation for 0/L Tbetween 2 × 10–3 and 6.67 × 10–3 and the limited free-streaming formulation for 0/L Tlarger than 6.67 × 10–3.We report the characteristics of all loop models studied, and present examples to illustrate how the temperature and density stratification can be drastically altered by the different conductivity regimes. Significant differences are evident in the differential emission measure distribution vs temperature, an important observable quantity. We also show how physical conditions of coronal plasma, and in particular thermal conduction, change with stellar surface gravity.We have found that, for fixed loop length and stellar gravity, a minimum of loop-top plasma temperature occurs, corresponding to the highest value of base plasma pressure for which the limited free-streaming conduction occurs. This value of temperature satisfies the appropriate scalingT 10–9 L g, in cgs units.  相似文献   
933.
Earlier models of compressible, rotating, and homogeneous ellipsoids with gas pressure are generalized to include the presence of radiation pressure. Under the assumptions of a linear velocity field of the fluid and a bounded ellipsoidal surface, the dynamical behaviour of these models can be described by ordinary differential equations. These equations are used to study the finite oscillations of massive radiative models with masses 10M and 30M in which the effects of radiation pressure are expected to be important.Models with two different degrees of equilibrium are chosen: an equilibrium (i.e., dynamically stable) model with an initial asymmetric inward velocity, and a nonequilibrium model with a nonequilibrium central temperature and which falls inwards from rest. For each of these two degrees of equilibrium, two initial configurations are considered: rotating spheroidal and nonrotating spherical models.From the numerical integration of the differential equations for these models, we obtain the time evolution of their principal semi-diametersa 1 anda 3, and of their central temperatures, which are graphically displayed by making plots of the trajectories in the (a 1,a 3) phase space, and of botha 1 and the total central pressureP c against time.It is found that in all the equilibrium radiative models (in which radiation pressure is taken into account), the periods of the oscillations of botha 1 andP c are longer than those of the corresponding nonradiative models, while the reverse is true for the nonequilibrium radiative models. The envelopes of thea 1 oscillations of the equilibrium radiative models also have much longer periods; this result also holds for the nonequilibrium models whenever the envelope is well defined. Further, as compared to the nonradiative models, almost all the radiative models collapse to smaller volumes before rebouncing, with the more massive model undergoing a larger collapse and attaining a correspondingly larger peakP c.When the mass is increased, the dynamical behavior of the radiative model generally becomes more nonperiodic. The ratio of the central radiation pressure to the central gas pressure, which is small for low mass models, increases with mass, and at the center of the more massive model, the radiation pressure can be comparable in magnitude to the gas pressure. In all the radiative models, the average periods as well as the average amplitudes of both thea 1 andP c oscillations also increase with mass.When either rotation or radiation pressure effects or both are included in the equilibrium nonradiative model, the period of the envelope of thea 1 oscillations is increased. The presence of rotation in the equilibrium radiative model, however, decreases this period.Some astrophysical implications of this work are briefly discussed.  相似文献   
934.
The paper presents the effect of O3 depletion on different night airglow emission lines. Calculations based on chemical kinetics show that the airglow intensity of Na5893Å, O5577Å and OH band emissions will also be affected due to the depletion of O3 concentration. Intensity of Na5893Å is calculated theoretically for Halley Bay (76° S,27° W), British Antarctic Survey Station, during the period 1973 to 1984. It is concluded from the covariation of different emission lines that O5577Å and OH emissions also follow the same trend of variation. A study has been made to find the correlation between the depletion of O3 concentration and total solar flare numbers. Important results are as follows:
(i)  Depletion of O3 is oscillatory upto 7932 solar flare numbers. The average trend of variation of O3 concentration is downward, i.e., O3 is depleted with the increase of total solar flare numbers.
(ii)  Afterwards, it follows a upward trend. Possible explanation of such type variation is also presented.
  相似文献   
935.
The fine structure in the flow field in the transition region above and surrounding a sunspot is determined fromCIV 1548 line profiles, observed with the High Resolution Telescope and Spectrograph (HRTS) during the Spacelab 2 mission. The observed line profiles show one, two, or three distinct velocity components within the resolution element of 1 × 1. Supersonic flows occur in small regions where the line profile has two or three components. The line component that shows supersonic speed often is weaker than the subsonic line component, which may explain why some observers have been unable to detect the supersonic flow component. The broadening of individual line components shows non-thermal velocities close to 20 km s–1. This suggests that turbulence is less important than usually considered.The presence of multiple flows, which also occurs in quiet solar regions, suggests that the transition region above sunspots has a sub-arc-second fine structure, perhaps consisting of thin fibrils. The Evershed flow in the transition region appears to have a correspondingly complex character, possibly consisting of sub- and supersonic siphon flows along the individual fibrils. Time changes in the flow field over 5 min may correspond to characteristic times of individual fine structures. Possible explanations of the net downward directed mass flux are presented.  相似文献   
936.
937.
Based on the assumption, that potential energy of matter in a mass filled space contributes a negative term to the energy tensor, solutions of the Einstein field equations are possible that exhibit no singularities, since the action of gravity changes sign when the density of potential energy exceeds the density of mass-energy. The solution, in which potential energy and mass-energy are in balance, is identical with Einstein's static universe. It is shown that all the observational facts, that are usually considered as confirming the big bang model, as the cosmological red shift, the abundances of light elements and the existence of the microwave background radiation, can be understood also in a static world model, when it is taken into account that due to the finite velocity of gravitational interaction all moving quanta lose momentum to the gravitational tensor potential. As in the static cosmological model the overwhelming fraction of the total mass exists in form of a hot intergalactic plasma. The model gives a simple explanation for the diffuse x-ray background and a solution to the missing mass problem without invoking any kind of new physics or of yet undiscovered particles. Also the causality problem and the curvature problem posed by the energy density of the quantum mechanical vacuum fields find a natural solution.  相似文献   
938.
With the advent of new astrophysical opacities it seems appropriate to discuss the need for a full radiative transfer (RT) theory instead of the usual equilibrium diffusion theory used in most nonlinear pulsation codes. Early studies on the importance of RT in the calculation of light curves for Cepheid models showed little effect over diffusion theory. The new opacities though may help to explain the bump mass discrepancy problem. For RR Lyrae models the use of RT theory causes some effects both in the color differences (U-B) as well as in the light curves. New opacities help to explain the period ratios for double mode RR Lyrae and beat Cepheids. A new area of research is in the modeling of stars with high luminosity to mass ratios that show tendencies for doubling and transitions to chaos, such as W Virginis and RV Tauri stars. For these stars it has been shown that RT is necessary in calculating their light curves and that the understanding of the shock dynamics depends on the transfer of lines in the pulsating RT dependent atmospheres (Fokin 1991).  相似文献   
939.
Photoelectric observations of the eclipsing binary V 1073 Cyg have been carried out inB andV colours at the Ege University Observatory. The light curves were analyzed with the Wilson-Devinney approach. A period study reveals that the orbital period of the system is decreasing at the rate of (3.21 ± 0.17) second per century.  相似文献   
940.
Investigations were carried out as to the feasibility of using a semiconductor source in the design of a new rapid response, open-path hygrometer. A single-beam instrument was constructed employing an infrared light emitting diode (LED) as a source instead of the usual high energy, wideband filament. The spectral emission envelope encompassed the 1.87 m water absorption band. Electronic modulation and thermoelectrical cooling of the diode eliminated the conventional chopper wheel and stabilized the peak wavelength emission. Path length was 200 mm. Over a water vapour concentration range of 0–16 g m–3, absorption varied by 2% in a linear fashion. At 10 Hz, the noise level was 0.1 g m–3 rms. Hygrometer resolution and stability are constrained by the detector noise level, the small source emission in the absorption band and low frequency drift in the optical filter. Despite these problems, the new instrument showed comparable performance characteristics to a commercial Lyman- hygrometer. Latent heat fluxes measured with both instruments and a Kaijo-Denki, 3-D sonic anemometer agreed to within 4% over a range 0–350 W m–2. Further improvements in performance can be anticipated with advances in detector and LED technology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号